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Abstract
Neurons in sensory systems are commonly characterized by their receptive fields. These are experi-
mentally often obtained by reverse-correlation analyses, for example, by calculating the spike-triggered
average. The reverse-correlation approach, however, generally assumes a fixed temporal relation be-
tween spike-generating stimulus features and measured spikes. Temporal jitter of spikes will therefore
distort the estimated receptive fields. Here, a novel extension of widely used reverse-correlation tech-
niques (spike-triggered average as well as spike-triggered covariance) is presented that allows accurate
measurements of receptive fields even in the presence of considerable spike-time jitter. It is shown that
the method correctly recovers the receptive fields from simulated spike trains. When applied to record-
ings from auditory receptor cells of locusts, a considerable sharpening of receptive fields as compared to
standard spike-triggered averages is observed. In addition, the multiple filters that are obtained from a
conventional spike-triggered covariance analysis of these data can be collapsed into a single component
if spike jitter is accounted for. Finally, it is shown how further effects on spike timing, such as systematic
shifts in spike latency, can be included in the approach.
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Introduction

Our senses provide us with information about various facets of the world around us, and
neurons throughout the nervous system have been shown to encode different aspects of
sensory stimuli in their activity. The sensitivity of a neuron to activation of particular stimulus
regions is captured by the neuron’s receptive field. Many visual neurons, for example, are
sensitive to light stimulation in a particular region of visual space and over a particular
temporal window in the past (Kuffler 1953; Hubel & Wiesel 1962; Meister & Berry 1999;
Reinagel & Reid 2000; Reich et al. 2000); these aspects are combined in the spatio-temporal
receptive field of the cell. In the auditory system, the spectro-temporal receptive field (STRF)
of a neuron describes the neuron’s sensitivity to the time course and the frequency content of
acoustic stimuli (Eggermont et al. 1983; Kim & Young 1994; Nelken et al. 1997; deCharms
et al. 1998).

Accurately measuring receptive fields and determining how neural responses relate to their
activation form a cornerstone in many electrophysiological investigations. Analyzing the tem-
poral characteristics of receptive fields can provide considerable insight about the dynamics of
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sensory processing and the representation of non-stationary stimuli. In the auditory system,
where temporal properties of stimuli and responses are thought to be of particular impor-
tance, investigations of the structure of STRFs have recently helped elucidate, for example,
the influence of natural stimulus statistics on the encoding process (Theunissen et al. 2000),
the hierarchy of auditory processing (Sen et al. 2001), functional differences of cortical
areas (Linden et al. 2003), task-related plasticity of receptive fields in auditory cortex (Fritz
et al. 2003), and nonlinear interactions in the sensory representation (Machens et al. 2004).

Because of the importance of the concept of receptive fields, much research has been dedi-
cated to the development of techniques that yield accurate descriptions of the receptive field’s
features. One of the most common and popular methods is based on presenting the neuron
under investigation with a broad-band stimulus and analyzing which parts of this stimulus
cause the neuron to fire, a technique that is called “reverse correlation”. In the simplest
case, the average stimulus segment preceding a spike, the “spike-triggered average” (STA)
can be used to estimate the receptive field (de Boer & Kuyper 1968; de Boer & de Jongh
1978; Dayan & Abbott 2001). The generic model that underlies reverse-correlation tech-
niques is composed of a linear filter in the appropriate stimulus space followed by a nonlinear
transformation that may include, for example, thresholding and saturation. This results in
the neuron’s firing rate, and according to this rate the individual spikes are drawn indepen-
dently by a random process. This model is often called linear–nonlinear (LN) cascade or
linear–nonlinear–Poisson (LNP) cascade to emphasize the random nature of spike genera-
tion in the final step (Korenberg & Hunter 1986; Simoncelli et al. 2004). Its appeal stems
from its mathematical simplicity combined with its straightforward interpretation: while the
linear filter captures the receptive field, the nonlinearity accounts for how the activation of
the receptive field is transformed into the neural response. If a model’s response to Gaussian
white noise is investigated, the STA is known to be an accurate estimate of the linear filter
that constitutes the first step of the LNP cascade model (Chichilnisky 2001).

As an extension of the STA approach, analysis of the “spike-triggered covariance” (STC),
the covariance matrix of stimulus segments preceding a spike, allows the determination of
receptive fields when multiple linear filters are required to describe the neuron’s sensitivity
to particular regions in stimulus space (de Ruyter van Steveninck & Bialek 1988; Schwartz
et al. 2002; Touryan et al. 2002; Lewis & van Dijk 2004; Simoncelli et al. 2004). The
theoretical foundations and properties of STA and STC estimators of receptive fields are
well understood (Paninski 2003). These techniques, however, rely on the assumption that
the spike-generating stimulus segment precedes the spike with a fixed temporal relation. If
this assumption is violated, for example if the spike timing is subject to noise that jitters the
exact location of a spike, the receptive-field estimates are distorted and important temporal
features may be washed out.

It is demonstrated here that it is possible to overcome this limitation of reverse-correlation
analysis by taking spike jitter explicitly into account in the underlying model. Recent work
has shown that STA estimates of receptive fields can be severely affected by spike jitter and
that re-aligning the spike-generating stimulus segments before averaging can improve these
estimates (Aldworth et al. 2005; Chang et al. 2005). Here, a generic framework is presented
for extending STA and STC analyses in order to capture spike jitter as well as other effects on
spike timing such as systematic shifts in spike latency. This results in an iterative algorithm
for spike-train data analysis, which is closely related to the Expectation Maximization (EM)
algorithm for obtaining maximum-likelihood estimators.

The algorithm is based on the idea that an estimate of the LNP cascade model can be
used to assess how likely different jitter values are for each observed spike, even if only a
single stimulus repeat is available for the analysis. This allows us to weight each stimulus
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segment in the vicinity of a spike according to its likelihood of having generated the spike.
By taking all these segments into account, the estimates of the LNP cascade model can be
successively improved, resulting in a self-consistent model when this procedure converges.
For both STA and STC analysis, it is first shown in the following that the algorithm recovers
the linear filters and nonlinear transformations in simulated data in a reliable and robust
manner. Subsequently, the applicability of the technique to physiological spike train data from
auditory receptor neurons of locusts is demonstrated. Finally, it is shown how further effects
on spike timing, such as systematic stimulus-dependent shifts of spikes, can be included in
the approach.

Cascade models with spike jitter

The LNP cascade is a fairly general model class often used to investigate neuronal response
features. We will here use the LNP model as a basis for the estimation of receptive fields as
well as for generating simulated spike trains to test the method. For simplicity, only models
whose input is a stimulus s that depends on time t only (such as full-field light intensity
or sound intensity over time) are investigated, but the approach and the main conclusions
also apply to cases where the stimulus depends on further variables, such as visual space or
acoustic frequency. In all simulations, the stimulus s (t) is a Gaussian white noise signal with
zero mean and unit variance, discretized in time with a time step of �t = 1 ms.

In the first step of the LNP model, the stimulus s (t) is linearly filtered. We explicitly
distinguish two types of models, depending on whether the first model stage is composed of
a single or of multiple parallel filters. The single-filter model is typically analyzed with the
STA; the multi-filter variant forms the basis of the STC analysis.

In the case of a single linear filter f (n) of length N, the output y(t) of the first model step
is given by the convolution of f (n) and the stimulus s (t):

y(t) =
N−1∑
n=0

s (t − n) · f (n). (1)

In the second model step, y(t) is transformed by a static nonlinearity g(y) into the spike
probability r (t):

r (t) = g(y(t)). (2)

Spikes are generated according to this spike probability r (t) by comparing the output of
a random number generator with r (t) for each time bin. To extend the LNP model, each
spike is finally jittered in time by a random amount τ drawn from a distribution p j (τ ),
which is here either a Gaussian distribution or a uniform distribution over a certain interval
of jitter values. This extended model will be called linear–nonlinear–Poisson–jitter (LNPJ)
cascade. It is depicted schematically in Figure 1A. The particular shapes of the linear filter,
the nonlinearity, and the jitter distribution used in the simulations will be shown together
with the results of the analysis.

Note that, because of the jitter, the spike probability r (t) corresponds to the probability
of generating a spike, but not to the probability robs(t) of observing a spike at time t. In
fact, while the probability of spike generation r (t) is generated by an LN cascade, robs(t)
can be viewed as resulting from an LNL cascade because of the additional linear filtering
with the jitter distribution p j (τ ). In principle, if the full spike rate robs(t) were measured,
generic, though data-intensive parameter estimation procedures based on the theory of LNL
cascades (Hunter & Korenberg 1986; Korenberg & Hunter 1986) would be applicable.
We will here follow a different route and discuss parameter estimation that directly uses
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Figure 1. LNPJ cascade models. (A) Model with a single linear filter. The stimulus s (t) is convolved with the
filter f (n). The resulting filter output y is transformed with the nonlinearity g(y) to yield the spike probability r ,
according to which spikes are generated by a random process. Finally, each spike is jittered by a random time τ

drawn independently from the jitter distribution p j (τ ). This results in the observed spike times tk. (B) Model with
multiple linear filters. In contrast to the single-filter model, the stimulus is convolved by M linear filters in parallel.
All filter outputs ym are combined by a multi-dimensional nonlinearity g(y1, . . . , yM).

individual spike times and does not rely on the full rate robs(t). The method will thus be
applicable also to the case where only a single stimulus repeat is available. Furthermore, the
explicit spike-jitter model of the last stage allows us to use a low-dimensional representation
of the corresponding filter, i.e., jitter distribution, and can easily be extended to include
other effects on spike timing that break the analogy to the LNL cascade (see, for example,
the spike-time shifts discussed below).

The analogy with the LNL cascade shows us, however, that the nonlinearity, which is
inevitable for most spiking neurons simply because of the existence of a threshold, will be
essential for distinguishing between temporal stimulus integration and spike jitter. Without
the nonlinearity, the two linear filters would collapse into one, leaving the contributions of
stimulus integration and jitter ambiguous without additional measurements (such as the
intracellular membrane potential) or additional assumptions about the shapes of the filters.

For the multi-filter model, the above scheme of the LNPJ cascade is modified, as shown
in Figure 1B, by using M different linear filters fm(n), m = 1, . . . , M, in parallel,

ym(t) =
N−1∑
n=0

s (t − n) · fm(n). (3)

The subsequent nonlinearity then combines all outputs ym of the linear filters to yield the
spike probability r (t):

r (t) = g(y1(t), . . . , yM(t)). (4)

In the simulations, this was implemented by calculating the sum of squares of all ym(t) and
then applying a one-dimensional nonlinearity to this sum similar to the case of the single linear
filter. Spikes were then generated according to the spike probability r (t) and subsequently
jittered as explained above.

Iterative algorithm for analyzing spike trains with jitter

The challenge that we now pose for the data analysis is to extract the linear filter, the static
nonlinearity, and the jitter distribution from simulated as well as from electrophysiologically
recorded spike trains. We will first discuss the case where a single linear filter is assumed
(extension of STA analysis) and subsequently explain how this is adjusted to incorporate
multiple linear filters (extension of STC analysis). The approach implemented in the algo-
rithm follows the intuitive idea that information about the spike jitter can be obtained from
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how well the stimulus segments in the vicinity of a spike match the estimate of the receptive
field. This allows us to calculate, based on the LNPJ model, the probability that a given spike
observed at time tk has some jitter τk. These probabilities can then be taken into account to
obtain improved estimates of the model components. The basic idea for this is the following:
if the actual jitter values τk of each spike were known, the parameters of the LNPJ model
could be easily estimated by reverse correlation, triggered at the times of spike generation
tk − τk. Since we only have the probabilities of the τk instead of the actual values, we will
average the estimators of the model components over all jitter values in a Bayesian fashion.
This effectively amounts to attaching a weight to each stimulus segment in the vicinity of a
spike and using this enlarged set of stimuli for a weighted reverse-correlation analysis. This
procedure can be iterated, following a self-consistency principle: the model parameters are
derived from the weights for the different stimulus segments, and the weights, in turn, result
from the model. When these two steps are in agreement, the algorithm has converged to a
self-consistent solution.

The approach is related to the Expectation Maximization (EM) algorithm (Dempster et al.
1977), which allows an iterative maximum-likelihood estimation of model parameters in the
case of incomplete or hidden data. The mathematical connection to the EM algorithm is
explained in the Appendix. Example programs for the implementation of the algorithm can
be found as C code at http://www.fas.harvard.edu/∼gollisch/jitteranalysis/.

Outline of the algorithm

For each spike k, the weights of the stimulus segments in the vicinity of the spike are denoted
by wk(τ ). These weights represent the probability that spike k was generated by the stimulus
segment that terminates at tk − τ and was subsequently shifted to tk by the jitter τ . One
iteration of the algorithms consists of the following operations:

1. Determine the weights wk(τ ) for each spike in the vicinity of its actual recorded time
tk based on the current model estimate.

2. Update the estimate for the linear filter f (n) based on the spike times and the corre-
sponding weights.

3. Update the estimate for the nonlinearity g(y).
4. Update the estimate for the distribution p j (τ ) of jitter values based on the distribution

of weights.

We will now discuss in more detail how the individual steps are implemented. The key
ingredient to the algorithm is the calculation of the weights wk(τ ) for each spike k, based on
the stimulus in the vicinity of the observed spike times tk and given the model parameters f (n),
g(y), and p j (τ ). For running the algorithm, of course, the true values of these parameters are
not known; instead, the current estimates of each iteration are used to calculate the weights.
Following the meaning of the weights stated above, it is clear that to calculate wk(τ ), we need
the probability that the stimulus segment terminating at tk −τ generates a spike as well as the
probability that a jitter τ occurs. More formally, wk(τ ) is given by the posterior probability
p(τ | data) that the jitter for this particular spike is τ , given the observed data according to
Bayes’ rule:

wk(τ ) = p(τ | data) = p(data | τ ) · pprior(τ )
p(data)

, (5)

where p(data) = ∑
τ ′ p(data|τ ′) · pprior(τ ′) is the prior probability of the data and yields effec-

tively a normalization constant. The data are in principle given by the whole spike train, but
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the jitter probabilities of a given spike are mostly determined by the time of this spike itself.
We therefore assume that the jitter probabilities for each spike are independent of the other
spikes and use only the observed spike time tk as the data. Effects of nearby spikes k′ �= k on
the weights wk(τ ) can be safely neglected as long as the typical interspike intervals are larger
than the relevant jitter. The prior probability pprior(τ ) over the jitter τ is given in the model
by p j (τ ). p(data | τ ) is the probability that a spike is generated at time tk − τ and therefore
calculated from the model as r (tk − τ ) according to Equations 1 and 2. The weights wk(τ )
are thus obtained by multiplying the spike probabilities r (tk − τ ) with the jitter probabilities
p j (τ ) and normalizing:

wk(τ ) = 1
Z

· r (tk − τ ) · p j (τ ) with Z =
∑
τ ′

r (tk − τ ′) · p j (τ ′). (6)

The procedure for obtaining the weights is depicted schematically in Figure 2. As the jitter
is not expected to reach arbitrarily large values, in practice we only regard such τ in the
calculations whose absolute values are smaller than some maximal jitter τmax, which is chosen
large enough to encompass the relevant range of jitter values.

After obtaining the weights wk(τ ), the model parameters are updated. The linear filter
is characterized by its values at discretized time points, f (n), n = 0, . . . , N − 1. For the
presented results, filters that extended over N = 40 time points were used. For a known set
of spike-jitter values {τk}, the f (n) could be obtained from a reverse correlation triggered at
the time points of spike generation tk − τk: f (n) = ∑

k s (tk − τk − n). The average over the
posterior distribution wk(τ ) of each jitter value is therefore

f (n) =
∑

k

∑
τ

wk(τ ) · s (tk − τ − n). (7)

Note that using the posterior distribution wk(τ ) for each spike k separately is identical to
averaging over the posterior distribution of all sets of jitter values {τk} because of the assumed
independence of each jitter with respect to the other spikes: the posterior distribution of the
set {τk} is simply the product of the individual (marginal) distributions wk(τk). Note also
that Equation 7 can be interpreted as a weighted reverse correlation that takes all stimulus
segments in the vicinity of a spike into account.

Subsequently, the f (n) are normalized so that their sum of squares equals one. Such
a normalization is necessary to make the model unambiguous, as a scaling of the filter
corresponds to a scaling of the nonlinearity g(y) along the abscissa.

To regularize the filter and avoid overfitting, a simple smoothing procedure was used here.
The smoothing was implemented by substituting f (n) with f (n)/2+( f (n−1)+ f (n+1))/4,
with f (−1) = f (N) = 0 at the edges. The danger of overfitting is a particular concern for
methods based on self-consistency. When using the algorithm, one should be aware that,
without regularizing the filters, small noise-related fluctuations in the receptive-field esti-
mates could be amplified by assigning higher weights to such jitter values that lead to similar
fluctuations. The applied simple smoothing procedure greatly reduces these effects, but de-
pending on the particular data at hand, it may be desirable to combine the algorithm with
more systematic approaches of regularization that incorporate smoothness or sparseness con-
straints (Sahani & Linden 2003; Machens et al. 2004). A suitable control to avoid overfitting
is model cross-validation, which will be discussed below.

To calculate the nonlinearity g(y), we first need to estimate the filter output y(t) from
the stimulus and the spike probability r (t) from the observed spike times for each time t.
y(t) is obtained by again convolving the corresponding stimulus segment with the filter f (n)
as in Equation 1. To obtain the corresponding r (t) we can use the interpretation that the
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Figure 2. Calculating the weights. For each spike k, the weights wk(τ ) for the jitter values τ are obtained through
a sequence of steps. The stimulus s (t) around a spike (top row) is first convolved with the current estimate of the
linear filter and subsequently transformed by the current estimate of the nonlinearity to obtain the spike probability
r (t) (middle row). The weights (bottom row) are obtained as a normalized product of the spike probability with
the current estimate of the jitter distribution, which is parametrized as a Gaussian distribution. Note that this
multiplication leads to a suppression of contributions from the spike probability for time points that are not near
the spike. The estimates of the filter, the nonlinearity, and the jitter distribution used in the calculation are shown
in gray. In this example, the spike probability at the actual time t = 0 of the observed spike is very small, indicating
that it is more likely that the spike was generated by stimulus segments that terminate around 10 ms earlier or later
and subsequently shifted to its observed location by the jitter.

wk(τ ) correspond to new weighted spikes at all times t = tk − τ in the vicinity of an observed
spike. We therefore calculate r (t) as the sum of the weights wk(tk − t) over all spikes k in
the vicinity of t, divided by the number of stimulus repeats Nrep. Since we only consider
jitter values whose absolute values are smaller than τmax, this concerns for each time t only
few spikes or no spike at all, in which case r (t) = 0. More formally, r (t) also follows as the
average over the posterior jitter distribution: If the τk were known, r (t) could be estimated as
1/Nrep · ∑

k δt,tk−τk , where δt1,t2 is the Kronecker delta, which equals one for t1 = t2 and zero
otherwise. The average over the posterior jitter distribution is therefore given by

r (t) = 1
Nrep

∑
k

∑
τ

wk(τ ) · δt,tk−τ = 1
Nrep

∑
k

wk(tk − t). (8)
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With the collection of pairs (y(t), r (t)) for all time points t, the nonlinearity g(y) can then
be determined according to a specific representation of g(y). Here a look-up table is used
with entries ȳ and r̄ that correspond to the average values of y(t) and r (t) in appropriately
chosen bins. As an alternative, a parametrized functional form could be applied, but the
look-up table has the advantage that it does not impose a particular functional relationship
between y and r . The binning is achieved by dividing the pairs (y(t), r (t)) into B bins so that
the B-th fraction with the smallest y(t) are combined in the first bin, the next B-th fraction
in the second bin and so on, so that all B bins are equally populated. Typically B = 40 bins
were used here.

To evaluate this representation of g(y) for a given value of y, the two bins nearest to y are
linearly interpolated. If y is smaller than the smallest ȳ value in the bins or larger than the
largest value, the resulting r is simply set to the corresponding r̄ value of the bin with the
smallest or largest ȳ value, respectively.

The jitter distribution p j (τ ) is here modeled as a Gaussian distribution with zero mean
and variance σ 2

j as the only parameter. The Gaussian distribution is likely to capture spike
jitter in many experimentally encountered situations, and its mathematical simplicity makes
the estimation of the variance straightforward. Note, though, that the applicability of the
algorithm is not limited to this particular parametrization of the jitter distribution. Also note
that the zero-mean condition poses no restriction for the algorithm, as a non-zero mean of the
jitter distribution is equivalent to a time translation of the linear filter. For a set of jitter values
{τk}, σ 2

j can be calculated as the average of τk
2, σ j

2 = 1/Nspikes ·∑k τk
2, where Nspikes denotes

the number of spikes used for the calculation. This is the maximum-likelihood estimator of
the variance. The average over the posterior jitter distribution is therefore obtained as the
weighted average of τ 2 over all spikes and jitter values:

σ j
2 = 1

Nspikes

∑
k

∑
τ

wk(τ ) · τ 2. (9)

The following starting values are used to initialize the algorithm: the filter f (n) is obtained
from a conventional STA. The look-up table for g(y) is constructed as explained above,
but since no weights have been calculated yet, r (t) is simply determined as the number of
observed spikes that fell into the corresponding time bin, divided by Nrep. For the standard
deviation σ j of the jitter distribution, no particular procedure is employed to determine the
starting value, but instead, a set of different initial values is used to confirm that the algorithm
converges to the same final estimates independent of the starting value for σ j .

The algorithm is typically carried out for several hundred iterations, and convergence is
checked by examining the evolution of the model parameters. Alternatively, a predefined
termination rule could be implemented for stopping the iteration.

Adjustments of the algorithm to the case of multiple linear filters

When a model with a single linear filter is insufficient to capture the details of the neuron’s
receptive field, the STA is often replaced by the analysis of the spike-triggered covariance
(STC). In this analysis technique, multiple linear filters can be extracted as eigenvectors
of the covariance matrix of those stimulus segments that preceded spikes (de Ruyter van
Steveninck & Bialek 1988; Simoncelli et al. 2004). The eigenvectors whose eigenvalues
differ significantly from the noise level denote the relevant filters. The method works best if a
small number of filters suffices to describe the receptive field. These can then be identified as
the eigenvectors corresponding to those eigenvalues that are distinct from most of the other
eigenvalues. Spike jitter, however, can distort these estimates in similar ways as for the STA.
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To account for spike jitter in the data analysis, we adjust the iterative algorithm to the case
of an LNPJ cascade with multiple parallel linear filters (Figure 1B). The main difference
in implementation is that, in analogy to the conventional STC analysis, the filters are now
obtained as eigenvectors of a matrix constructed from the weighted stimulus segments. Again,
each spike is associated with weights for the stimulus segments in its vicinity. These weights
are taken into account to calculate the matrix C(n1, n2):

C(n1, n2) = 1
Nspikes

∑
k

∑
τ

wk(τ ) · s (tk − τ − n1) · s (tk − τ − n2). (10)

The prior stimulus covariance Cprior(n1, n2) = 〈s (t − n1) · s (t − n2)〉t , where 〈 〉t denotes the
expectation value over time t, is subtracted from C(n1, n2). The M linear filters are then
identified from this matrix as the M eigenvectors whose eigenvalues deviate most from the
zero level of non-relevant eigenvalues. Note that the number M of linear filters that are
included in the algorithm has to be specified a priori.

As the nonlinearity g(y1(t), . . . , yM(t)) is now multi-dimensional, the simple one-
dimensional binning to create the look-up table for the representation of the nonlinearity does
not work any longer. Two different approaches were used here, either a two-dimensional bin-
ning or a multi-dimensional Taylor expansion. In the two-dimensional binning, the outputs
y1(t) and y2(t) of two filters are associated with the spike probability r (t), which is obtained
from the observed spikes and the weights in the same way as for the one-dimensional case.
The bins in the y1 − y2 plane are determined in the following way: the pair (y1(t), y2(t)) is
transformed into polar coordinates with length l y(t) and angle ϕy(t). According to ϕy(t),
one of Bϕ equally spaced angular segments [(k − 1) · 2π/Bϕ, k · 2π/Bϕ], k = 1, . . . , Bϕ, is
assigned, and in each of these segments, Bl bins are filled according to l y(t) as before in the
one-dimensional case: the first bin contains the Bl -th fraction of the data with the smallest
l y(t) and so on. The nonlinearity is then parametrized by the mean values of l y(t), ϕy(t), and
r (t) in each of the Bϕ · Bl bins. In the presented examples, Bϕ = 8 and Bl = 8 or 16 were used.

As an alternative parametrization of the nonlinearity, a simple second-order multi-dimen-
sional Taylor expansion of the nonlinearity is applied:

g(y1, . . . , yM) = a +
M∑

i=1

bi · yi +
M∑

i=1

i∑
j=1

ci j · yi · yj . (11)

The parameters a, bi , and ci j are obtained from a least-squares fit of the corresponding input–
output combinations (y1(t), . . . , yM(t), r (t)). For the case M = 2, the binning procedure and
the Taylor expansion performed similarly; all results presented here for this case were ob-
tained with the former unless otherwise stated. While the binning procedure is limited to
the case M = 2, however, the Taylor expansion can be used independently of the number of
linear filters taken into account. Note that the simple form of the nonlinearity in Equation 11
works well in the investigated examples, although it enforces neither a threshold nor a satu-
ration. It can thus be viewed as a minimal-assumption low-dimensional parametrization of
the nonlinearity and may be substituted by more specific parametrized functions taylored to
the particular system at hand to improve the model estimation procedure.

To compare the linear filters that are extracted by the algorithm with the original ones
used in the simulations, it must be kept in mind that the linear filters are not uniquely
determined. In fact, any other set of linear filters that spans the same stimulus sub-space is
equally good as a description of the first model stage (Paninski 2003; Simoncelli et al. 2004).
To assess the performance of the algorithm, we will therefore evaluate how well the original
filters are represented by the combination of extracted filters. This is done by calculating the
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orthogonal projection of each original filter onto the space spanned by the extracted filters.
If the analysis is successful, the extracted filters should span the same space as the original
filters, and thus the projections should be identical to the original filters. If an erroneous
sub-space results from the analysis, on the other hand, this will be reflected in deviations of
the projections from the original filters.

Extension of the algorithm to include systematic spike-time shifts

One example will be investigated for extending the iterative algorithm to include effects on
spike timing beyond jitter. For the case of a single linear filter, systematic shifts in spike
timing that depend on how strongly the neuron is driven by the stimulus are included in
the model. In the simulations, this is implemented by shifting each spike that is generated
at time t by an amount α · y(t), where y(t) is the output of the linear filter stage at time t.
The proportionality constant α is typically negative to lead to shorter spike latencies when
the neuron is driven more strongly. The jitter is then added on top of this shift. Note that
for this scenario the observed firing rate robs(t) can no longer be viewed as the result of an
LNL cascade as in the case of the stimulus-independent jitter.

To account for this systematic shift in the algorithm, we include α in the iterative estimation,
starting with an initial value of zero. The calculation of the weights is modified in the following
way: before multiplying r (tk − τ ) with the jitter distribution p j (τ ) (cf. Equation 6), we must
first account for the fact that part of the difference between the observed spike time tk and
the assumed generating spike time tk − τ is caused by the shift. Instead of multiplying with
just p j (τ ), we therefore multiply with p j (τ − α · y(tk − τ )). To update α, we use the slope of
a weighted straight-line fit to the relation between τ and y(tk − τ ). The new value for σ 2

j is
then obtained by extending Equation 9 to account for the systematic shift, resulting in the
updating rules

α = 〈τ · y〉k,τ − 〈τ 〉k,τ · 〈y〉k,τ

〈y2〉k,τ − 〈y〉2
k,τ

, σ 2
j = 〈(τ − α · y)2〉k,τ , (12)

where 〈 〉k,τ denotes the weighted average with weights wk(τ ) over all spikes and all τ values.

Model validation

When the algorithm is tested on simulated data, its performance can be checked by how
well it recovers the parameters that were used for simulating the data. In order to test more
generally how the obtained LNPJ model compares to the standard STA- and STC-based
LNP models, we use two different methods of cross-validation, which are both performed
on novel data, i.e., data that were not used to estimate the model parameters.

1. If firing rates are available from the data, either because the data were obtained from
a simulation or because measurements with a large number of stimulus repeats were
taken, we can calculate the model-explained fraction of variance of the firing rate.
This is computed as 1-MSE(rmodel, rdata)/VAR(rdata), where MSE(rmodel, rdata) is the
mean square error of the model-predicted firing rate rmodel(t) compared to the firing
rate rdata(t) of the data and VAR(rdata) is the variance of rdata(t). Both these quantities
are calculated as averages over time. A perfect model would yield a model-explained
variance of one, and any deviation of the model from the data lowers this value. For the
LNPJ model, the calculation of the model firing rate rmodel(t) simply amounts to the
application of the corresponding LNL cascade. For measured spike-train data, rdata(t)
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is calculated here as the peri-stimulus time histogram (PSTH) by counting the spikes
that fell in each time bin.

2. Using directly individual spike times without estimating firing rates from the data, we
can calculate the model likelihood. This method can be used for both simulated and
measured data even if only a single stimulus repeat is available. The model likelihood
is calculated as the probability that the investigated model would produce the observed
spike train. To do so, again the model prediction of the firing rate rmodel(t) is calculated,
and the log-likelihood follows as

log L(model) =
∑

t=tspike

log[rmodel(t)] +
∑

t �=tspike

log[1 − rmodel(t)] (13)

where the first sum runs over all spike times and the second over all other time points.

The cross-validation calculations can easily be included in the iterative algorithm so that
model performance is evaluated after each iteration. In the first iteration, before including
jitter in the estimated model, this procedure then calculates the validation measures for the
STA- or STC-based LNP model.

Tests and applications of the algorithm

Analysis of simulated single-filter models

If spikes are subject to temporal jitter, the estimates of the temporal aspects of receptive
fields as obtained by reverse correlation can be substantially distorted. Figure 3 illustrates
this with a simple example. As shown schematically in Figure 3A, spike trains were simulated
by passing a white-noise stimulus through a temporal linear filter and subsequently through
a static nonlinearity resulting in a spike probability. The linear filter determines the neuron’s
receptive field. For each time bin, the occurrence of a spike was then determined with a
random-number generator according to the calculated spike probability. Each spike time
was subsequently jittered by some random amount τ , drawn from a Gaussian probability
distribution p j (τ ) (Figure 3B). Example spike trains obtained from a simulation with this
LNPJ cascade are shown in Figure 3C.

It is well known that, for Gaussian white-noise stimulation as used in this simulation, the
spike-triggered average (STA) correctly recovers the linear filter of this type of model neuron
in the absence of spike jitter (Chichilnisky 2001). Here, however, the spike jitter distorts this
estimate considerably (Figure 3D); instead, the STA yields the convolution of the original
filter and the distribution of jitter values. Furthermore, this also results in an erroneous
estimate of the neuron’s nonlinearity; the true nonlinearity is much steeper than found by
this estimation (Figure 3E). If the jitter distribution were known, the original filter could be
recovered by deconvolution of the STA,1 but in the typical experimental situation, the jitter
distribution cannot be directly measured. With the presented iterative algorithm, we can
nevertheless recover the correct receptive field of the neuron, even without prior information
about how strong the spike jitter in the data was.

Figure 4 shows the performance of the described algorithm for the example introduced in
Figure 3. When we let the algorithm run for several hundred iterations, we find that it quickly
converges to a solution without further changes in σ j , the linear filter, or the nonlinearity.
The final estimates of the filter, the nonlinearity, and the jitter distribution (Figure 4A–C, red

1Note, however, that even if the jitter distribution for deconvolution were known, one would face the notorious
problem of noise amplification for frequencies that are poorly represented in the jitter distribution.
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Figure 3. Effect of spike-time jitter on the spike-triggered average. (A) Schematic drawing of the model underlying
the simulations as well as the data analysis. The stimulus is convolved with a linear filter, here shown as a biphasic
kernel, and transformed by a nonlinearity. The output of the nonlinearity gives the spike probability, from which
spikes are drawn randomly. Finally, the resultant spikes are jittered to produce the observed spike train. (B) Distri-
bution of jitter values in the simulation. Each jitter value was drawn from a Gaussian distribution with a standard
deviation of 5 ms. (C) Stimulus and example spike trains from the simulation. (D) STA (black) and actual filter
used in the simulation (gray). The STA does not match the true filter because of the jitter. In fact, the STA results
from the convolution of the true filter and the spike jitter distribution. (E) Nonlinearity used in the simulation (gray)
and estimate obtained from the STA analysis (black). The estimated nonlinearity is considerably less steep.

lines) closely match the functions that were used for the simulation (blue lines). The iterative
algorithm thus yields greatly improved estimates of the receptive field and the nonlinearity
as compared to the original STA analysis (green lines). The evolution of the estimate for
σ j illustrates the process of convergence (Figure 4D). All final estimates are independent of
the initial value for σ j over a large range, as shown by the same final value of σ j for initial
values of 8 ms and 1 ms. The final estimate of σ j deviates by about 5% from the actual
standard deviation of 5 ms used in this simulation. Running the algorithm for many different
instantiations of the simulation indicates that this slight underestimation of σ j is a typical
observation, but is reduced when more simulated data is included in the analysis.

The algorithm does not only recover the simulation parameters better than the STA anal-
ysis, but also leads to a quantitatively better model. This is shown by the increase of the
model-explained variance of the firing rate (Figure 4E) and the model likelihood (Figure 4F).
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Figure 4. Recovery of receptive field and nonlinearity with the iterative algorithm. The simulation is based on about
2200 spikes in 50 s simulated time. (A) Estimate of receptive field. The filter obtained at the end of the algorithm
(red) matches the true filter (blue) well, whereas the STA (green) substantially deviates. The thin gray lines show
the evolution of the filter. (B) Estimate of the nonlinearity. Colors refer to the same cases as in (A). (C) Estimate
of the jitter distribution. Colors refer to the same cases as in (A). The green curve here corresponds to one chosen
initial value used for the algorithm. The blue curve shows the histogram of the actual jitter values, drawn from a
Gaussian distribution with 5 ms standard deviation. (D) Evolution of the estimate for the standard deviation σ j

of the jitter distribution. For different starting values, σ j converges to the same value close to the value of 5 ms
used in the simulation (thin black line). (E) Model-explained fraction of variance of the firing rate evaluated after
each iteration shown for both initial conditions of σ j . (F) Model likelihood after each iteration. (G) Firing rates
calculated for a novel stimulus segment for the original model (blue), the STA-based LNP model estimate (green),
and the final LNPJ model estimate (red).

A direct comparison of the firing rates for the STA-based LNP model and the final estimate
of the LNPJ model to the firing rate of the simulation is shown in Figure 4G. The obtained
LNPJ model clearly yields a much better prediction of the firing rate. The reason for this
is not so much a better representation of event timing and jitter, but rather that this model
predicts the occurrence and the size of firing events with much higher fidelity than the LNP
model because of its more accurate representation of the receptive field and the nonlinear-
ity. Obtaining these more accurate representations, however, is a consequence of explicitly
accounting for the jitter process in the fitted model.

In the above scenario, the jitter distributions in the simulation as well as in the parameter es-
timation procedure were both Gaussian. The algorithm is, however, robust enough to tolerate
a difference in shape between the true underlying jitter distribution and the parametrization
of the jitter distribution in the fitted model. This is illustrated in Figure 5 where the same
analysis as above was performed, but now with simulated spikes that were jittered according
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Figure 5. Performance of the algorithm for simulated data where the spike jitter was drawn from a distribution
that is uniform in some range. (A) Evolution of the estimate for σ j for two different initial values. (B) Estimate
of receptive field. The final filter of the LNPJ model (red line) matches the original filter (blue line) much better
than the STA (green line) does. (C) Estimate of jitter distribution. The jitter distribution is still parametrized by a
Gaussian (red line), but the mean distribution of weights (black line) reveals a clear deviation from the Gaussian
case and thus gives evidence of the original distribution of jitter values (blue line), which were drawn from a uniform
distribution. The green line shows the distribution corresponding to the initial value of σ j = 8 ms.

to a distribution that is uniform over the range from −8 to +8 ms. The algorithm still con-
verges independent of the initial value for σ j (Figure 5A), and the receptive field is accurately
recovered (Figure 5B), although the assumed underlying Gaussian jitter distribution (Fig-
ure 5C, red line) differs from the true jitter distribution (blue line), which is nearly flat in
the relevant range with fluctuations resulting from the finite number of simulated spikes.

To further examine the distribution of the jitter in this case, we can investigate how the
weights wk(τ ) that are associated with the jitter values τ are distributed on average over all
spikes k. The shape of this mean weight distribution (Figure 5C, black line) reveals differences
of the underlying jitter distribution from the Gaussian model. In the earlier case where the
jitter was drawn from a Gaussian distribution, the mean weights also displayed a Gaussian
shape (data not shown), but in the case of the uniform distribution, the mean weights show
systematic deviations. This could be used to develop a suited parametrization of the jitter
distribution, which could subsequently be applied in the iterative algorithm. Here, however,
we are not interested in the detailed shape of the jitter distribution, but rather in recovering
the receptive field, for which the Gaussian parametrization appears to be sufficient.

In order to further test the consistency of the results obtained with the iterative algorithm,
the unjittered simulated spike trains were also analyzed. As the spikes are drawn according to
a Poisson process with a modulated rate, the spike trains are still variable, but since there is
no jitter, this does not distort the estimation of the receptive field as obtained from the STA.
In this case, even with an initial value of σ j = 12 ms, the algorithm finds the correct σ j = 0
solution within less than twenty iterations (data not shown). This confirms the consistency
of the applied iterative procedure.

Receptive fields and jitter for locust auditory receptor neurons

We now apply the algorithm to electrophysiological data obtained from locust auditory re-
ceptor neurons. These were stimulated with an amplitude-modulated 5-kHz tone; new am-
plitude values were drawn from a Gaussian distribution in steps of �t = 0.2 ms. The mean
intensity was adjusted to elicit an intermediate firing rate for these neurons of around 100 Hz,
and the standard deviation of the amplitude distribution in the experiments was either 5 or
10 dB. Example spike trains for repeated presentations of the same stimulus are shown in
Figure 6A. For application of the algorithm, the amplitude modulation was used as the
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Figure 6. LNPJ model for locust auditory receptor cells. The analysis is based on 550 presentations of a 2-s
stimulus resulting in slightly more than 56,000 spikes. (A) Amplitude modulation of sound wave and spike trains
recorded from a single cell for several stimulus repeats in the locust auditory nerve. (B) Estimate of the receptive
field. The receptive field is dominated by a single peak, which is narrower for the final estimate (red) as compared
to the initial STA (green). Also, a slight negative component is revealed in the estimate of the filter. The full
filter used in the algorithm, which extends over 8 ms, is shown in the inset. (C) Estimation of the nonlinearity.
The initial nonlinearity (green) is considerably less steep than the final estimate (red) returned by the algorithm.
(D) The standard deviation σ j of the jitter distribution converges to the same value near 0.3 ms independent of
the initial value. (E) Model-explained variance of the firing rate after each iteration for the two initial values of
σ j . (F) Model likelihood after each iteration. (G) Sample spikes (black dots) and corresponding PSTH (blue line)
from the measured data and corresponding firing rates from the LNP model (green) and the final LNPJ model
(red). (H) Evolution of the standard deviation σ j of the jitter distribution in the case where each spike received
an additional artificial jitter drawn from a Gaussian distribution with 0.4-ms standard deviation. (I) Estimation of
receptive field in the case of additional artificial jitter. The STA estimate is distorted (green), whereas the recovered
receptive field at the end of the algorithm (red) is nearly identical to the receptive field obtained without artificial
jitter (black). (J) Estimate of the nonlinearity in the case of additional artificial jitter. Colors refer to the same cases as
in (I).
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stimulus, normalized to a mean of zero and a variance of one. An initial segment of 200 to
300 ms was discarded to avoid the sharp transient of spike frequency adaptation, and a final
segment of 300 ms was ignored in the parameter estimation procedure and instead used for
cross-validation.

We find again that the algorithm converges quickly and yields the same σ j , receptive field,
and nonlinearity independent of the initial value for σ j . In the present example, the estimated
jitter was around 0.3 ms (Figure 6D). The small jitter led to slight, but systematic changes
between the original STA and the final estimate for the filter, which shows a more sharply
peaked window of temporal integration (Figure 6B). In addition, a small negative component
around 5 ms prior to the spike is now revealed in the filter. The half-peak width of the final
estimate was 0.49 ms as compared to the original half-peak width of 0.66 ms for the STA.
These findings were consistent for all four cells recorded under this experimental paradigm;
in each case, the final linear filter was narrower and more sharply peaked than the original
STA. On average, the half-peak width decreased from 0.76 ms (0.14 ms STD) for the STA
to 0.59 ms (0.13 ms STD) for the final filter, and the corresponding final values for σ j were
on average 0.29 ms (0.05 ms STD).

As seen from the earlier simulations, the estimate of the neuron’s nonlinearity can also be
severely affected by spike jitter. For the present data we find that, by taking spike jitter into
account, a much sharper nonlinearity is obtained with the iterative algorithm as compared
to the STA-based estimate (Figure 6C); for large y, the slope of the final estimate for g(y) is
about twice as large as for the original estimate.

Cross-validation shows that the final LNPJ model indeed yields a better description of
the data (Figure 6E and F). Nevertheless, only about a quarter of the firing-rate variance
is explained by the model, and the comparison of the firing rates (Figure 6G) shows that
the model does not fully capture the reliable and sparse firing of the neuron; while spike
jitter appears to be an important factor in shaping the neuron’s output, other known effects
are here neglected, such as the LNLN-cascade-like stimulus integration (Gollisch & Herz
2005), refractoriness (Schaette et al. 2005), and different mechanisms of adaptation (Gollisch
& Herz 2004).

Since we do not know the true underlying jitter distribution, we cannot assess the cor-
rectness of the estimation of the algorithm in the present case as easily as for the simula-
tions. As a consistency check, however, we can add artificial jitter to all recorded spikes
and test whether this leaves the final receptive fields invariant. As expected, the algo-
rithm now returns a larger σ j (Figure 6H), which reflects the combination of the origi-
nal jitter in the recorded spike train and the artificially added jitter. In fact, the obtained
value of σ j = 0.47 ms closely matches what was expected from the earlier measured jitter
value of 0.26 ms (Figure 6D) and the added artificial jitter with a standard deviation of
0.4 ms: σ

(expected)
j =

√
(0.26 ms)2 + (0.4 ms)2 ≈ 0.48 ms. Furthermore, the algorithm yields

the same receptive field and nonlinearity after adding the artificial jitter as before (Figure 6I
and J), underlining the consistency of the estimation procedure for the temporal receptive
fields of the investigated receptor neurons.

Estimation of receptive fields with multiple linear filters

Calculating the STA always yields a single linear filter and is therefore not suited if multiple
stimulus components interact to produce spikes, as, for example, in the energy model of
complex cells in visual cortex (Adelson & Bergen 1985). As an alternative, STC analysis
can extract the parameters of a multi-filter LNP cascade. To extend this analysis to include
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the spike jitter of the LNPJ cascade, the iterative algorithm can be modified as explained
above.

Figure 7 shows the performance of the multi-filter version of the algorithm for a simulation
with two linear filters, one biphasic as in the previous analysis and the other with a Gaussian
profile. Without spike jitter, the spectrum of eigenvalues would show two values that are
distinct from the others. Due to the jitter, however, we see instead that the eigenvalues
rather display a continuous distribution (Figure 7A, green points), and the corresponding
estimates of the two filters are distorted compared to the true filters (Figure 7B and C). The
algorithm again quickly converges and yields much more accurate filters. The final solution
is independent of the initial value of σ j , even though this parameter is again somewhat
underestimated compared to the value of the simulation (Figure 7D). Cross-validation again

Figure 7. Estimation of multiple linear filters from simulated data. The analysis is based on 50 s simulated time,
repeated ten times, and resulting in about 8000 spikes. (A) Spectrum of eigenvalues from the original STC analysis
(green) and from the final iteration of the algorithm (red). (B, C) Estimation of the two filters of the receptive field.
For both filters, the blue line shows the actual filter used in the simulation, which is compared to the projection
of this filter onto the two most relevant eigenvectors as obtained from the standard STC analysis (green) and as
obtained at the end of the algorithm (red). (D) Estimation of the standard deviation σ j of the jitter distribution
for two initial values. (E) Model-explained variance. (F) Model likelihood. (G) Evolution of eigenvalues when two
filters are used in the iterative algorithm. (H) Evolution of eigenvalues when three filters are used in the iterative
algorithm. The third eigenvalue decreases again after an initial increase, but still remains above the noise level given
by the bulk of eigenvalues. (I) Comparison of model-explained variance of the firing rate for the two-filter model
with the nonlinearity parametrized as a look-up table (magenta) or as a second-order Taylor expansion (orange) and
for a three-filter model with a second-order Taylor expansion nonlinearity (blue). The inset presents an enlarged
view of the values over the last 100 iterations.
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shows the improvement in the obtained LNPJ model for predicting firing rate and spikes
(Figure 7E and F).

Note that at the end of the simulation, two eigenvalues clearly stick out from the rest
(Figure 7A, red points). These correspond to the two filters that describe the neuron’s re-
ceptive field. When running the algorithm, however, the number of considered filters has to
be specified beforehand, and in the present case, two filters were used. As a note of caution,
it should be emphasized that the two distinct eigenvalues by themselves cannot be taken as
evidence that two filters are needed and suffice to describe the data. For comparison, we
can run the algorithm with three filters taken into account. The algorithm then leads to
three raised eigenvalues (Figure 7H), although only two filters had been used in the simula-
tion. However, the additional, third eigenvalue typically displays a substantial decrease (after
an initial phase of increase), indicating that including this component may be superfluous.
This is confirmed by investigating the fraction of explained variance in the firing rate (Fig-
ure 7I), which yields almost the same value for the three-filter analysis as for the two-filter
analysis.

Test for multiple linear filters in the locust data

We now apply the analysis for multiple linear filters to the data from the locust auditory
receptor neurons. A regular STC analysis yields two eigenvalues that are raised slightly above
the noise level of the other eigenvalues, but the spectrum is nearly a continuum (Figure 8A,
green points), from which it is difficult to determine whether the first two eigenvectors are
indeed the relevant filters. These eigenvectors are dominated by peaks that are shifted with
respect to each other (Figure 8B). The small dip near 4 ms prior to the spike in the second
eigenvector is likely a reflection of the fact that the eigenvectors of the matrix, which is
symmetric by construction, must be orthogonal to each other.

When we include the spike jitter in the analysis and iteratively estimate the relevant fil-
ters with a model that takes two filters into account, we find that only a single eigenvalue
remains raised above the noise level (Figure 8A, red points). The corresponding eigenvec-
tor (Figure 8C, red line) is more sharply peaked than the components obtained earlier,
and its peak lies in between those seen in Figure 8B. The second eigenvalue, on the other
hand, has decreased to about the noise level after a short initial phase of increase (Fig-
ure 8D). The corresponding eigenvector shows no particular structure at the end of the
analysis and is instead dominated by noise (Figure 8C, gray line). This indicates that a
single-filter model is sufficient to describe the temporal receptive field of these neurons in
response to amplitude-modulated sound with fixed carrier frequency. The two components
obtained from the conventional STC analysis may be interpreted as reflecting an artificial
division into components that correspond to “early” and “late” spikes, caused by spike
jitter.

The nonlinearity of the model maps the two filter outputs y1 and y2 onto the spike prob-
ability r . For a simple visualization of this processing step, Figures 8E and F show one-
dimensional representations of the nonlinearity separately for y1 and y2. These are calculated
as look-up tables analogous to the single-filter nonlinearity by using only y1 or y2, respec-
tively, as the input variable. While the nonlinearity becomes steep with respect to the first
eigenvector (Figure 8F, red line), it is nearly flat for the second eigenvector, confirming that
this eigenvector plays essentially no role for the neural output.

The standard deviation of the jitter distribution again converges to a value near 0.3 ms
independent of the initial value (Figure 8G). The cross-validation measures show the
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Figure 8. Estimation of multiple linear filters for the locust data. The analysis is based on the same data as in
Figure 6. (A) Eigenvalue spectrum from the standard STC analysis (green) and from the final iteration of the
algorithm (red). Only a single eigenvalue remains elevated, now clearly separated from the noise level. (B) Filters
of the LNP model obtained as the two most relevant eigenvectors of the initial STC matrix. (C) Filters of the
LNPJ model obtained as the two most relevant eigenvectors at the end of the algorithm. Only the eigenvector
corresponding to the largest eigenvalue (red) shows a particular structure; the second eigenvector (gray) appears
to consist of random fluctuations. The black line shows the filter that was obtained from the single-filter analysis
(same as red line in Figure 6B). (D) Evolution of eigenvalues. The second eigenvalue quickly decreases after a short
initial increase and is finally reduced to the noise level. (E, F) One-dimensional representations of the nonlinearity
separately for the two filter outputs y1 and y2, respectively, for the initial LNP model (E) and for the final LNPJ
model (F). The black line in (F) shows the nonlinearity obtained from the single-filter analysis (same as red line
in Figure 6C) (G) Evolution of the standard deviation σ j of the jitter distribution. (H) Model-explained variance.
(I) Model likelihood.

improvement in the obtained LNPJ model (Figure 8H and I). The model-explained vari-
ance of the firing rate is now substantially higher than for the single-filter LNPJ model
obtained earlier by iteratively adjusting the STA. The difference results from the even
narrower filter and steeper nonlinearity obtained here as compared to the earlier model,
whose components are shown for comparison by the black lines in Figure 8C and F. We
conclude that for these data the covariance-based analysis deals more successfully with
the aforementioned deviations of this system from the simplified LNPJ structure. The
narrow, sub-millisecond structure of the temporal receptive fields found in this analysis
is in accordance with previous findings, based on stimulation with short clicks, that re-
vealed temporal-integration processes over several hundred microseconds for these neurons
(Gollisch & Herz 2005).
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Extension of STA estimation to include systematic latency shifts

Finally, let us investigate how the presented analysis can be extended to include further
effects on spike timing other than jitter. As an example, we use a systematic shift of the
spike latency that depends on how strong the input to the neuron was. This is motivated by
findings of systematic shifts in first-spike latency in cat auditory nerve fibers and A1 neurons
in response to sound stimulation (Heil & Neubauer 2001, 2003); louder sounds yield shorter
latencies. It may be expected that similar effects on spike timing occur also during continuous
stimulation.

We here model such an effect by shifting each spike time by a certain amount, which
depends on how strongly the neuron was activated. Within the applied model, stronger
activation is set to come with shorter latencies, and the shift in spike timing is proportional
to the output of the linear filter with proportionality constant α. As explained in an earlier
section, the iterative algorithm is slightly extended to fit this model by taking such a shift
into account when calculating the weights for the jitter values and by estimating α alongside
with the standard deviation σ j of the jitter distribution.

Figure 9 shows for simulated data that this extended algorithm converges nicely to the
parameters that were used in the simulation. The cross-validation measures again confirm
that the final model estimate yields a superior description of the data compared to the STA-
based estimation. These results show that the algorithm is able to recover further effects on
spike timing in addition to temporal jitter.

The same analysis was also performed on the locust data, but yielded no systematic effects
on spike latency; α quickly converged to near zero, and the obtained receptive field and σ j

were the same as shown in Figure 6. Systematic latency shifts therefore do not appear to be

Figure 9. Estimation of the receptive field for a model with spike shift as well as spike jitter. The analysis is based
on 50 s simulated time, repeated five times, and resulting in about 11,000 spikes. (A) The estimated filter at the
end of the algorithm (red) recovers the shape of the true filter (blue) as well as its latency. The STA is shown in
green. (B) True nonlinearity (blue) and estimated nonlinearity at the beginning of the algorithm (green) and at the
end (red). (C) The standard deviation σ j of the jitter distribution converges to approximately the correct value of
3 ms (thin black line) as shown for two different initial values. (D) The proportionality constant α that relates the
time shift of a spike to the output of the linear filter converges more slowly than σ j , but also reaches approximately
the correct value of −3 (thin black line). (E) Model-explained variance. (F) Model likelihood.
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relevant for analyzing the receptive fields of the investigated neurons; in contrast, spike-time
jitter does influence reverse-correlation estimates and should be accounted for in the analysis.

Discussion

Reverse correlation and spike-triggered analyses have been established as fundamental meth-
ods to measure neuronal receptive fields in a fast and reliable manner. Spike jitter, however,
can strongly confound these analyses, in particular when the receptive fields contain features
on similar (or smaller) time scales as the jitter. The presented iterative algorithm can im-
prove estimates of the receptive field and output nonlinearity as well as yield a measure of the
spike jitter in the data. Note that moderate numbers of spikes, large jitter values, and fairly
variable responses (cf. spike trains in Figure 3C) have been used in the simulations to illus-
trate the applicability of the algorithm.

Modeling spike jitter

Commonly, spike jitter is only considered when spike-train recordings for several repeats of
the same stimulus are available. The present approach allows us to define and work with
spike jitter also in the case of only a single stimulus repeat. This increases the applicability
of the algorithm and avoids the need to trade a thorough exploration of stimulus space for
obtaining large numbers of repeats.

The spike-jitter distribution was modeled here as a Gaussian, which does not enforce
causality of spiking; in the model, a large jitter value could lead to a spike that precedes the
stimulus feature that elicited this spike. It may therefore be possible to exploit spike causality
in the algorithm, for example by applying jitter distributions that are asymmetric or have a
cut-off. In the present study, however, both the simulated and the experimental data had
rather long latencies as apparent by the initial part of the filter with values near zero, leaving
spike causality unaffected.

A central aspect of the applied model is an explicit distinction between precision (given
by the temporal spike jitter) and reliability (determined by the Poisson spike-generation pro-
cess). Variability in spike trains involves both lack of precision and lack of reliability, and it will
generally not be apparent from the structure of the spike train alone to which degree these two
aspects contribute. Variability resulting from the reliability of spike generation depends on
the interaction between the stimulus and the neuron’s stimulus-integration characteristics,
whereas spike jitter contributes a stimulus-independent component to spike-train variabil-
ity. Distinguishing between effects of precision and reliability is relevant for the analysis of
receptive fields, as the variability resulting from the spike probability does not distort the
estimates obtained from reverse-correlation analyses, but the spike jitter does. Moreover, a
functional distinction between different types of variability in the spike train may ultimately
help elucidate the mechanisms that shape the reliability of the neural code.

From a biophysical point of view, it is likely that spike-train variability results from a vari-
ety of processes that may contribute to both variability in spike generation and spike jitter.
One such noise source is the stochastic opening and closing of ion channels in the neu-
ral membrane (Schneidman et al. 1998). This can lead to intricate effects on spike timing
due to the interplay between cell-intrinsic conductances and the synaptic input (Schreiber
et al. 2004). Stimulus-independent spike jitter can occur, for example, during the propa-
gation of the action potential along the axon (Moradmand & Goldfinger 1995; Kuriščàk
et al. 2002). Also, the dynamics of the currents involved in spike generation have a strong
influence on spike jitter during super-threshold activation by determining the susceptibility
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of spike timing to input perturbations (Gutkin & Ermentrout 1998; Gutkin et al. 2005).
The presented method is not aimed at distinguishing between these sources of jitter, but
at estimating the undistorted receptive field independently of the biophysical origin of the
jitter. Nevertheless, the resulting quantitative model may aid investigations of the origin and
functional consequences of spike-timing variability in various experimental situations.

Extensions

As an example for extending the algorithm beyond spike-time jitter, we have seen that it is
possible to extract also a systematic stimulus-dependent latency shift. The basic approach
of iteratively adjusting the LNP cascade as a basic neuron model combined with different
effects on spike timing may thus aid the investigation of various dynamics that shape neural
spike trains. This may include a stimulus-dependency of the jitter distribution or effects of
the spiking history on spike timing. Depending on the concrete model of history dependence,
however, the latter might interfere with the assumed independence of spike jitter, thus com-
plicating the calculation of the weights. Furthermore, history effects on spike timing should
be combined with modeling the effect on the spike probability itself, as in the spike response
model (Gerstner & Kistler 2002). The recent progress in fitting models with more realis-
tic spike generation and refractory-period like dynamics (Miller & Mark 1992; Keat et al.
2001; Aguera y Arcas & Fairhall 2003; Pillow & Simoncelli 2003; Paninski et al. 2004; Pillow
et al. 2005) may help to eventually combine these approaches.

The present analysis is based on Gaussian random stimuli, but several neural systems have
been shown to be more effectively probed by stimuli with natural statistics. A future extension
of the algorithm may thus explore the possibility to combine it with recent techniques that aim
at applying reverse-correlation concepts to recordings made with natural stimuli (Theunissen
et al. 2001; Paninski 2003; Sharpee et al. 2004; Touryan et al. 2005).

Limitations

In all investigated cases, we have seen that the algorithm converges reliably and fairly rapidly.
There is, however, no mathematical proof of convergence and uniqueness of solution. In fact,
if one were to start the algorithm with the unreasonable initial value σ j = 0, no variation in
spike timing would ever be explored by the algorithm, and the estimates would therefore stay
fixed at their initial values. A useful check of convergence of the algorithm to a reasonable
solution can be achieved by using different initial values for σ j .

While the algorithm accurately recovers the correct receptive fields used in the simulations,
the estimates of the underlying jitter distribution appear less reliable. In most cases, the final
σ j underestimates the value used in the simulations by a few per cent. This downward bias
makes σ j a conservative estimate of the amount of jitter in the data. The estimates of the
other model parameters, on the other hand, appear to be very robust and do not depend on
an accurate model of the true jitter distribution.

The algorithm relies on the fact that the investigated neuron’s response characteristics
can be at least approximated by an LNP cascade. For systems where additional processing
stages are essential, application of the algorithm may be limited. For a detailed model of the
auditory periphery, for example, the mechanical frequency filtering and the low-pass filter
of the receptor-cell membrane suggest the use of two linear filter stages with a potential
intermediate nonlinearity (Palmer & Russell 1986; Gollisch et al. 2002). The stimulus used
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in this study aimed at minimizing this additional complication by using a single fixed carrier
frequency and only varying the amplitude modulation.

Alternative approaches

The presented algorithm has a generic nature and makes few assumptions about the charac-
teristics of the neural response. Depending on the data at hand, however, other approaches to
handling spike jitter in the estimation of receptive fields also seem feasible and could be used
for a comparative investigation. In some systems, discrete spike events can be distinguished,
where isolated spikes occur reliably within a short temporal interval in nearly all trials for
repeated stimulus presentations. If such events can be identified, the variance of spike timing
in these events can be used to define a measure of spike jitter (Berry et al. 1997; Liu et al.
2001; Lestienne 2001) that could be directly compared to the estimate of σ j returned by
the iterative algorithm. It may then furthermore be feasible to measure the jitter distribu-
tion directly and thus deconvolve the STA or use the mean spike time of each event as the
triggering time for a reverse-correlation analysis.

Recently, methods for dealing with spike jitter similar to the one presented here have been
proposed by Chang et al. (2005) and Aldworth et al. (2005) (see also Dimitrov & Gedeon
2006). These algorithms aim at dejittering recorded spike trains by properly shifting the
stimulus segments preceding each spike, based on a chosen measure of how well a stimulus
segment matches the filter. In contrast to this shifting method, the approach presented here
is based on weighting all stimulus segments in the vicinity of a spike and uses the predictions
of the LNPJ model itself as a natural measure for the relevance of each of these segments.
Together with the convenient mathematical relation to the EM algorithm as presented in
the Appendix, this yields a robust and generic methodology that is also easily applied to the
more complex cases of multiple linear filters or systematic shifts in spike latency as seen in
this work.

For the considered single-filter neuron model, the measured STA is the convolution of the
true filter and the spike-jitter distribution. As neither of the latter two are known in the esti-
mation, the task is reminiscent of the “blind deconvolution” problem in the signal-processing
literature (Haykin 1994). In the standard scenario for blind deconvolution, an observed sig-
nal results from the convolution of an unknown original signal with an unknown filter, and
the challenge lies in the reconstruction of both the original signal and the filter under certain
assumptions about the statistical properties of the signal source. In a similar way, we here
attempt to deconvolve the STA and recover the underlying filter and jitter distribution, which
are both initially unknown. Our approach differs from the standard concept of blind decon-
volution, however, in that we do not make assumptions about the statistical characteristics
of the filter, but rather rely on details of the observed stimulus–response relation.

Conclusion

Spike jitter is likely to contribute to the variability observed in recorded spike trains. Includ-
ing it in the models that are used to analyze data has two advantages: first, it may lead to
a more accurate characterization of how a neuron encodes and processes sensory informa-
tion, as described, for example, by its receptive field; second, the spike jitter itself contains
information about noise sources and other processes that influence the neuron’s operating
characteristics. Spike jitter is likely to interfere with receptive-field estimation primarily in
systems where temporal sensitivity and accuracy are important. In the sensory periphery,
this includes mechanosensory and auditory systems where rapid processing of stimuli is a
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primary issue. On slightly longer time scales, however, neurons in many cortical areas are
likely to experience similar effects on spike timing resulting from intracortical network inter-
actions (Shadlen & Newsome 1998). The generic nature of the algorithm introduced here
for analyzing a neuron’s input–output relation should provide for a wide range of possible
applications of the presented methodology.
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Appendix

Relation to EM algorithm

The iterative algorithm for estimating the model parameters presented in the main text is
related to the expectation–maximization (EM) algorithm, which is widely used to obtain
maximum-likelihood solutions in an iterative fashion (Dempster et al. 1977). The starting
point for applying the EM algorithm is typically the occurrence of hidden or unobserved
data, which in the present case are the jitter values for each individual spike.

The general EM approach begins with the full log-likelihood of the model, i.e., the loga-
rithm of the probability that the full data set, observed as well as hidden data, is produced
by the model for a given set of model parameters. One then proceeds by alternating the
two fundamental steps of the EM algorithm: in the E-step, the expectation value of the
log-likelihood function given the current set of model parameters is calculated by inte-
grating over the hidden data. In the M-step, the model parameters are updated by com-
puting those model parameters that maximize the expectation value of the log-likelihood
function.

In the present case, we largely stick to this prescribed procedure for the E-step, but
substitute part of the complex maximization calculation with the easy-to-compute reverse-
correlation technique for updating the model parameters. The integration over the hidden
jitter values in the E-step results in the weights wk(τ ) for a jitter value τ of spike k.

To show this in more detail, we first write down the full likelihood function, which is
defined as the probability of the data (observed spike times tk as well as hidden jitter values
τk) given the model parameters f (n), g(y), and p j (τ ):

L( f, g, p j ) = p({tk}, {τk}| f, g, p j )

=
∏

k

g(s ∗ f (tk − τk)) ·
∏

t �=tk−τk

[1 − g(s ∗ f (t))] ·
∏

k

p j (τk). (14)

Here, s ∗ f is defined as the convolution of the stimulus s and the filter f , s ∗ f (t) =∑
n s (t − n) · f (n). The first product in Equation 14 captures the probabilities that spikes

were generated at the appropriate points in time, the second product gives the probabilities
that other time points did not generate spikes, and the product of the p j (τk) simply denotes the
probability that the particular jitter values τk occurred. The log-likelihood of the parameters
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is therefore given by

log L( f, g, p j )

=
∑

k

log[g(s ∗ f (tk − τk))] +
∑

t �=tk−τk

log[1 − g(s ∗ f (t))] +
∑

k

log[p j (τk)]

=
∑

k

log
g(s ∗ f (tk − τk))

1 − g(s ∗ f (tk − τk))
+

∑
t

log[1 − g(s ∗ f (t))] +
∑

k

log[p j (τk)]. (15)

Ideally, we could now integrate out the unknown τk and then maximize the log-likelihood
over all model parameters in a straightforward maximum-likelihood approach. The resulting
integral, however, becomes highly complex, as the required marginal probabilities of the jitter
values themselves depend on the model parameters. The advantage of the EM algorithm lies
in the fact that these marginal probabilities are held fixed during the M-step, which makes
the maximization at least somewhat simpler.

For the E-step, we have to calculate the expectation value E[log L( f, g, p j )] by integrating
over the hidden data τk. To do so, we must sum the log-likelihood over all sets of values of
τk and weight each contribution with the probability p({τk}| f, g, p j ) that this set {τk} occurs.
As each individual jitter value τk depends almost exclusively on the stimulus in the vicinity
of spike k itself and not on the times of other spikes, we can approximate this probability by
the product of the marginal probabilities p(τk| f, g, p j ) for each individual spike k. The latter
are nothing but the weights wk(τk) from the main text. The use of the weights wk(τk) can
therefore be viewed as resulting from the prescription of the E-step in the EM algorithm.
This analogy allows us to directly extend this procedure to other effects on spike timing such
as the latency shifts discussed in the main text of this paper.

We thus compute the expectation value of the log-likelihood as

E[log L( f, g, p j )] ≈
∑

τ1,τ2,...

( ∏
k

wk(τk)
)

· log L( f, g, p j )

=
∑

k

∑
τ

wk(τ ) · log
g(s ∗ f (tk − τ ))

1 − g(s ∗ f (tk − τ ))
+

∑
t

log[1 − g(s ∗ f (t))]

+
∑

k

∑
τ

wk(τ ) · log p j (τ ). (16)

We can interpret the above equation in the following way: instead of the original spike times
tk, we now include all times t between tk − τmax and tk + τmax, but weight each of these “new
spike times” by wk(τ ) with τ = tk − t.

In the M-step, the model parameters f , g , and p j should be updated by maximizing this
expectation value. The new parameters for p j can be calculated independently by maximizing
the last term in Equation 16. For the Gaussian parametrization of p j (τ ), this yields an
updating rule that simply amounts to calculating the weighted average of τ 2 over all spikes and
jitter values, Equation 9. The maximization with respect to f and g is still a computationally
complex problem, but with the “weighted-spike-times” interpretation that we have gained
from the likelihood picture, we now return to the simpler STA estimate and approximate this
part of the M–step by calculating the spike-triggered average given the new, weighted spike
times. In general, the STA and the maximum-likelihood estimates of the parameters differ,
although they bear some resemblance, and interesting connections can be drawn between
them (Paninski 2004). For this reason, the algorithm presented in the main text is not a true
maximum-likelihood estimator, but comes close to it in spirit.


