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Abstract. Sound patterns are defined by the temporal relations of their
constituents, individual acoustic cues. Auditory systems need to extract these
temporal relations to detect or classify sounds. In various cases, ranging from
human speech to communication signals of grasshoppers, this pattern detection
has been found to display invariance to temporal stretching or compression of the
sound signal (‘linear time-warp invariance’). In this work, a four-neuron network
model is introduced, designed to solve such a detection task for the example of
grasshopper courtship songs. As an essential ingredient, the network contains
neurons with intrinsic bursting dynamics, which allow them to encode durations
between acoustic events in short, rapid sequences of spikes. As shown by
analytical calculations and computer simulations, these neuronal dynamics result
in a powerful mechanism for temporal integration. Finally, the network reads
out the encoded temporal information by detecting equal activity of two such
bursting neurons. This leads to the recognition of rhythmic patterns independent
of temporal stretching or compression.
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1. Introduction

Acoustic signals have an intrinsically temporal structure. Animals and humans extract meaning
from sound patterns based on precise temporal relations between acoustic events. A spoken
word, for example, is identified by its sequence of phonemes. Interestingly, this identification
appears to be independent of the absolute timescale and instead relies primarily on relative
comparisons of event durations; understanding a spoken word is largely independent of the
speed at which it is articulated [1]–[3].

This invariance appears to add substantial complexity to the auditory detection task.
Nonetheless, similar phenomena can even be found for the small nervous systems of insects.
Certain grasshopper species, for example, detect their species-specific acoustic communication
signals largely independent of stretch or compression in time [4]. In the following, we will
investigate a small, biologically plausible model of a neuronal network that achieves similar
pattern detection performance.

To detect acoustic signals, a neural system has to cope with some fundamental challenges:

1 Temporal integration: relevant sensory information is contained in structures that are
distributed over time, and the neural system thus needs to integrate this information, for
example, to assess the duration between acoustic events [5]–[7].

2 Information buffering: to combine and compare information from different periods of the
stimulus, earlier information has to be buffered until the later information is available.

For the task of detecting spoken words, an elegant neural network model has been proposed
by Hopfield and Brody [8]. The neurons in this model buffer information by virtue of sustained
firing activity, and they integrate temporal information by displaying stereotypic activity profiles
that represent the time since an acoustic event. For each detected pattern, it will then be a
different set of neurons that have equal activity levels at some point in time, which causes them
to transiently synchronize their spike times.

The authors refer to this mechanism as a ‘many are equal’ computation [9]: first, a stimulus
is encoded so that it causes equal activity in a certain set of neurons; then, this equality is read
out via, in this case, detection of synchronous activity. This strategy directly leads to invariance
to the absolute temporal scale, which they term ‘linear time-warp invariance’; for a stretched
or compressed acoustic pattern, equality in activity will still occur, albeit at a different level of
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activity. For the model proposed in this work, we will see that despite its composition of few
neurons only, similar computational principles are at work.

2. Time-warp invariance in grasshopper song detection

Many grasshopper species recognize potential mating partners via the precise temporal structure
of their acoustic communication signals, which are produced by rasping the hind-legs across the
wings. This detection task shares with the word-recognition problem that it is performed in such
a way that temporal stretching and compression of the acoustic signal affect the detection only
little. In particular, this time-warp invariant signal detection has been studied in the grasshopper
speciesChorthippus biguttulus[4, 10, 11]. The male courtship songs consist of a rhythmic
structure of alternating loud and quiet parts, commonly calledsyllablesand pauses[10]. In
accordance with time-warp invariant pattern detection, it is the ratio of the durations of these
two acoustic features that appears to be the crucial parameter for eliciting a response by a
female grasshopper, which then produces a song of her own. In behavioral experiments, this
has been assessed by the response probabilities of female grasshoppers to artificial courtship-
song templates, which simply consist of loud and quiet parts of broadband noise. Varying the
duration of the syllables and pauses of these acoustic signals revealed that such combinations
were most effective that kept the ratio of these durations near 5 : 1, see figure1. This time-warp
invariant detection presumably allows the female to detect a male independent of his current
body temperature, which affects the speed of his singing [4].

Despite this remarkable performance, the auditory system of the grasshopper is
relatively small, probably containing on the order of tens of neurons at individual stages of
processing [12]. Studies inC. biguttulus, for example, indicated that around 50–60 auditory
receptor neurons at each ear transduce sound information [13] and project to the metathoracic
ganglion, where preprocessing and filtering is thought to take place. From here, about 20–
30 neurons on each side send the auditory information on to the brain [12, 14]. These
ascending neurons appear to be subdivided into neurons that carry information about sound
location and about sound structure [15]. Interestingly, in contrast to auditory receptor neurons,
ascending neurons generally do not track the acoustic patterns well [16]. They are therefore
thought to represent the results of specific filtering operations that help solve the behavioral
task of song detection. These neurons typically display transient activity [14]. One ascending
neuron in particular, named AN12, has been implicated in song detection [16]; it marks the
onsets of syllables with short and temporally precise spike bursts. Moreover, the neuron’s
response structure shows intriguing temporal-integration characteristics; in response to a song
template, the number of spikes in the burst is proportional to the duration of the preceding
pause [16].

Based on similar response characteristics—short and precise spike bursts that display
temporal integration—we will here investigate a biologically plausible model that aims at
solving the time-warp invariant grasshopper song detection with few neurons only. Key features
of the model lie in the dynamics of individual neurons. These turn out to perform essential
parts of the temporal processing based on generic aspects of neuronal membrane conductances,
which can provide powerful dynamics for auditory signal processing [17].
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Figure 1. Time-invariant detection of communication signals by the grasshopper
C. biguttulus. (a) Template of the male grasshopper’s courtship song. It consists
of broad-band noise that is modulated into periods of high sound intensity
(‘syllables’) and low sound intensity (‘pauses’) and thus mimics the natural
rhythmic structure of the courtship song. Female grasshoppers respond to natural
songs as well as to these artificial templates by producing a song of their own.
(b) Responsiveness of female grasshoppers to different combinations of syllable
and pause durations. The circles show the approximate pause durations that gave
the highest number of responses for different fixed syllable durations. The solid
line is a regression line. The dashed line shows the region for which the response
was at least about half of the maximum response. Panel (b) adapted and modified
from [4] with permission (copyright Springer-Verlag).

3. Model for an intrinsically bursting neuron

In the following, we will introduce a four-neuron network model for detecting grasshopper song
templates. Before discussing the full model, we will investigate some single-cell dynamics that
will be essential for performing the necessary temporal stimulus integration and information
buffering to solve this task. The single-neuron models will be based on the widely used leaky
integrate-and-fire model, which describes the neuronal membrane as an RC-circuit with leak
resistanceR, resting potentialVrest, and membrane capacitanceC [18]. For an external input
current Iext(t) (for example, synaptic input), the membrane potentialV(t) is governed by the
circuit’s current equation

Iext(t) = C ·
dV(t)

d t
+

V(t) − Vrest

R
. (1)

Multiplying by R and introducing the membrane time constantτm = R · C yields the dynamics
of the membrane potential in a commonly used format:

τm ·
d

dt
V(t) = Vrest− V(t) + R · Iext(t). (2)
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In the absence of input,V(t) relaxes towards the resting potentialVrest. WhenV(t) reaches the
threshold potentialVthresh> Vrest, a spike is elicited, which is marked as a brief depolarization
of the membrane potential and a subsequent reset toVreset< Vthresh. To model the neuron’s
refractory period, we then fix the neuron’s membrane potential atVthreshfor the timeTref.

As a key element, we will enrich the integrate-and-fire model with dynamics that render
the neuron intrinsically bursting so that—once triggered, for example, by brief external input—
it can elicit a series of spikes at high rate. Intrinsic bursting is a commonly observed feature
in neuronal systems [19, 20], and a wide variety of biophysical mechanisms have been
suggested to underlie burst generation [21]–[25]. Most of these rely on the interplay between
fast positive feedback responsible for generating subsequent spikes after the first and a slower
negative feedback that eventually terminates the burst [26]–[28]. We will here investigate such
a model where the fast feedback is based on a depolarizing conductance that is triggered by
the neuron’s own spiking activity, whereas the slow feedback results from accumulation of a
shunting adaptation conductance. To start, we first study the neuron with the positive feedback
conductance alone before adding the adaptation dynamics.

3.1. Fast positive feedback

In analogy to persistent sodium currents [20, 29], we include a positive feedback conductance
gp(t) in the leaky integrate-and-fire model by adding a termR · gp(t) · (Vp − V(t)) to
equation (2). Between spikes, the conductancegp(t) is assumed to relax exponentially back to
zero with a time constantτp. When a spike occurs,gp(t) is set to the fixed valueg(0)

p . In general,
the resulting current could be mediated by sodium or calcium influx into the neuron [30]–[32]
so that the reversal potentialVp is substantially higher than the threshold potentialVthresh. Strong
activation of this conductance will therefore drive the neuron towards spiking.

Let us briefly analyze the characteristics of this neuron model. Like many systems with
positive feedback, this extended integrate-and-fire model displays bistability; for a constant
external inputIext(t) = I0, it can either remain quiescent or show continuous spiking activity.
The range of input levelsI0 for which a quiescent state exists can be easily found. In the
absence of any spikes,gp(t) will be zero, and for constant inputI0, the voltage will assume
the constant levelVrest+ R · I0, which, for consistency, must be smaller than the thresholdVthresh.
For I0 < (Vthresh− Vrest)/R, the neuron can thus stay in a quiescent state; for stronger inputs,
firing will be initiated.

If, again under constant inputI0, the neuron is spiking, each spike leads to a reset of
V(t) andgp(t) so that firing must be periodic. The neuron is refractory forTref and then takes
some timeT to again reachVthresh and elicit the next spike. The firing rateν is thus given
by ν = 1/(T + Tref). To further analyze this active state, we can obtain an implicit equation
for T by using an approximation for the positive feedback. We replace the voltage-dependent
driving forceVp − V(t) with a constant intermediate voltage level, hereVp − (Vthresh− Vreset)/2.
Such an approximation is often used in neural network theory and essentially means that we
are substituting the usual conductance change induced by a synapse by a fixed current input
(‘current-synapse approximation’). This allows us to gain some intuition about the neuronal
dynamics by analytical manipulations of the membrane-potential equation. For the subsequent
computer simulations, however, we will return to the biologically more accurate description
with synaptic conductances.
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With the current-synapse approximation and the fact thatgp(t) has decayed fromg(0)
p to

g(0)
p · exp(−Tref/τp) at the end of the refractory period, we obtain the dynamics of the membrane

potential as

τm ·
d

dt
V(t) = Vrest− V(t) + R · I (0)

p · e−t/τp + R · I0, (3)

wheret = 0 marks the end of the refractory period and

I (0)
p = g(0)

p · e−Tref/τp ·

(
Vp −

Vthresh− Vreset

2

)
(4)

is the feedback current at the end of the refractory period. With initial conditionV(0) = Vreset,
equation (3) can be solved analytically to yield

V(t) = Vrest+ R · I0 + (Vreset− Vrest− R · I0) · e−t/τm + R · I (0)
p ·

τp

τm − τp
·
(
e−t/τm − e−t/τp

)
. (5)

For the often convenient caseτm = τp = τ , the last term simply becomesR · I (0)
p · t/τ · e−t/τ .

For the case without feedback,I (0)
p = 0, equation (5) reverts to the standard single-

exponential relaxation that crosses threshold ifI0 > (Vthresh− Vrest)/R. The feedback term,
however, may induce a threshold crossing ofV(t) even for smaller values ofI0. The timeT
for reaching threshold—and thus occurrence of the next spike—must satisfy the consistency
equation obtained by setting equation (5) equal toVthresh, which can be written as

Vthresh− Vreset+ (Vreset− Vrest− R · I0) ·
(
1− e−T/τm

)
= R · I (0)

p ·
τp

τm − τp
·
(
e−T/τm − e−T/τp

)
.

(6)

We can graphically observe the different scenarios for obtaining solutions by plotting the
left- and right-hand side of equation (6) as a function ofT for different values ofI0, see
figure 2(b). One finds that by increasingg(0)

p and making the feedback large enough, one can
obtain solutions—and thus sustained spiking activity of the neuron—even for negative input
currentsI0. The range ofI0 for which two solutions are obtained corresponds to the range of
bistability; the neuron can be active or quiescent. Note, though, that there is only one active
state; the second solution of equation (6) is non-physical in the sense that it corresponds to a
second threshold crossing byV(t) (now crossing threshold from above), which does not occur
because the first crossing already elicits a spike and terminates the dynamics by resetting the
membrane potential.

Figure2(c) shows the numerical solutions of equation (6) together with steady-state firing
rates obtained from simulations of the full neuron dynamics (without the current-synapse
approximation). In either case, a large range of bistability is visible where the neuron can remain
quiescent or regularly and strongly active, depending on initial conditions. Note that while the
current-synapse approximation captures the general structure of the full model’s activity states
very well, details apparently differ, such as the minimum current that can sustain the active state.

3.2. Slow negative feedback

Many neurons display fatigue and adaptation during prolonged activity [33, 34]. When
adaptation results from the neuron’s own spiking, this acts as negative feedback [35].
Biophysically, this may result, for example, from recruitment of slow, hyperpolarizing
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(b) (c)(a)

Figure 2. Activity states of a bistable model neuron. (a) Schematic drawing of
the neuron model. The bistability is produced by a fast positive feedback process.
(b) Schematic graphical solution of equation (6). The right-hand side of the
equation is plotted for different levels of constant current inputI0 as a function
of time T (solid lines). The left-hand side is shown by the thick dashed line. For
high positiveI0, the intersection of the graphs shows a single solution of equation
(6), marked by a circle. The solid line also crosses the zero line (thin dashed line),
which corresponds to threshold crossing in the case without feedback,I (0)

p = 0.
This means that the current input is supra-threshold so that the neuron cannot
be quiescent at this input level. For intermediate inputI0, the two intersections
correspond to a true solution for smallerT (marked by a circle) and a non-
physical solution for largerT (marked by a cross). The solid line does not cross
the zero line; the input is thus sub-threshold so that the neuron can be either firing
or quiescent. For large negativeI0, no solution of equation (6) exists. The input is
sub-threshold, and the neuron must be quiescent. (c) Activity states for different
inputs levelsI0. Numerical solutions of equation (6) yield the active state where
the neuron is regularly firing at high rate and the non-phyiscal solutions, which
correspond to a second threshold crossing. The quiescent state exists as long
as the input is sub-threshold. A similar layout of states is found in simulations
that take the full dynamics of the feedback conductance into account, without
the current-synapse approximation (circles). The following parameters were
used:τm = τp = 5 ms,Vrest= Vreset= −60 mV, Vthresh= −40 mV, R = 100 M�,
Tref = 0.5 ms,g(0)

p = 60 nS andVp = 0 mV.

potassium currents or inactivation of sodium currents. In analogy to the potassium currents,
we here model slow feedback adaptation by including an adaptation conductancega(t) to the
bistable integrate-and-fire model. Temporal integration based on slow conductances may indeed
be a general feature of auditory systems [36].

The reversal potentialVa of this conductance is typically near the Nernst potential for
potassium and thus substantially smaller than the thresholdVthresh. Activation of the conductance
ga(t) therefore inhibits spiking and drives the neuron towards quiescence. Between spikes, we
assume thatga(t) exponentially relaxes to zero with a time constantτa that is considerably larger
thanτm andτp. For every spike,ga(t) is incremented by a fixed valueg(0)

a so that the effect of
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adaptation can accumulate over many spikes. In addition, we assume that the only other input
into the neuron consists of short trigger currentsI trigger(t), suited to induce a transition from
the quiescent to the active state within the bistable regime, and that a white noise sourceη(t)
acts on the membrane potential. The trigger signal is used to mark the occurrence of temporal
events that are characteristic for an acoustic signal, such as sound onsets. From the model’s
perspective, its purpose is simply to push the neuron into its active state when such an event
occurs. Trigger signals could be mediated by neurons that encode the basic stimulus structure
upstream of the read-out network, and their use is motivated by the abundance of onset (and
to a lesser degree offset) detectors in auditory systems [37]. Mechanisms that are thought to
mediate onset detection include synaptic depression [37, 38] and post-onset inhibition [39]. In
the grasshopper auditory system, the aforementioned precise and brief activity of some neurons
at sound onset give evidence of such trigger signals, whereas sign inverting neurons that are
inhibited by sound could support marking offset events [12].

The full dynamics of the model neuron between spikes and with trigger inputs at timestn
are thus given by:

τm
d

dt
V(t) = Vrest− V(t) + gp(t) · R ·

(
Vp − V(t)

)
+ ga(t) · R ·

(
Va − V(t)

)
+

∑
n

R · I trigger(t − tn) +η(t), (7)

τp
d

dt
gp(t) = −gp(t), (8)

τa
d

dt
ga(t) = −ga(t), (9)

I trigger(t) = I (0)

trigger · e−t/τtrigger, for t > 0. (10)

When V(t) reachesVthresh, a spike is elicited and membrane potential and conductances are
adjusted according to

V(t) −→ Vreset, (11)

gp(t) −→ g(0)
p , (12)

ga(t) −→ ga(t) + g(0)
a . (13)

After a spike,V(t) is kept fixed atVresetfor the timeTref.
When this neuron model receives a sequence of trigger signals at varying intervals1t , it

responds with a short burst of several spikes at high rate for each trigger signal, see figure3.
The dynamics of this model can be visualized by treating the current induced by the adaptation
conductance as an inputIext(t) to the bistable dynamics that are described by the diagram of
figure 2(c). This is shown in figure3(d). When the neuron is triggered into the active state
(phase 1 in figure3(d)), it fires a sequence of spikes at high rate, and adaptation builds up with
each spike (phase 2). This will lead to a stronger negative adaptation current, which eventually
reaches the point where the bistable region ends, beyond which only the quiescent state exists.
The dynamics of the neuron will thus transition into the quiescent state at a nearly fixed level
of ga = gcrit

a (phase 3), and firing will cease. As long as no other inputs arrive, the neuron will
remain in this quiescent state while the adaptation current slowly decays (phase 4). The next
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(a)

(c)

(d)

(b)

Figure 3. Dynamics of a bursting neuron. (a) Schematic drawing of the
neuron model. A fast positive feedback and a slow negative feedback result
in the bursting behavior. (b) Membrane potential and adaptation conductance
in response to a sequence of trigger signals at varying intervals. The neuron
fires bursts of spikes that are accompanied by rapid increases of the adaptation
conductancega. Note that the peaks ofga always reach about the same level.
(c) Enlarged section of the neuron’s membrane potential, which exemplifies
that shorter intervals are followed by fewer spikes, longer intervals by more
spikes. (d) Comparison of the activity states of the bistable neuron (same
as in figure2(c)) with the evolution ofga and of the activity level in the
simulation. The activity level at each point in time is estimated by the inverse
of the surrounding inter-spike interval (ISI). The dynamics can be understood by
separation into four phases: (1) transition into the active state by a trigger input,
(2) firing at high rate whilega accumulates, (3) transition at approximately a
fixed level ofga into the quiescent state, (4) recovery from adaptation while in the
quiescent state. Parameter values were the same as in figure2, and in addition:
τa = 150 ms,g(0)

a = 7 nS, Va = −60 mV, I (0)

trigger = 4 nA and τtrigger = 1 ms. The
intervals between trigger events were here drawn randomly from a uniform
distribution between 10 and 300 ms.
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trigger signal can then induce a new transition into the active state, for which the starting level
of ga depends on the recovery time since the last trigger signal.

The decay of adaptation thus performs the temporal integration; it marks the time that has
elapsed since the last trigger signal. This information is then read out by how many spikes can
be elicited beforegcrit

a is again reached. An important aspect of this encoding mechanism is
that the transition into the quiescent state essentially functions as a reset, settingga to gcrit

a , so
that the state of the neuron is, to a good approximation, independent of any historyprior to
the last trigger signal. (The fact that each spike generates a finite additiong(0)

a to the adaptation
conductance, however, leads to shot noise-like fluctuations in the level ofga.) This reset thus
starts an unbiased clock that times the duration between trigger signals. The duration of the burst
itself is here negligible compared to the quiescent period between the trigger signals, given that
the build-up of adaptation during the active state is rapid compared to its decay.

The burst of spikes that follows the new trigger signal will then contain as many spikes
as required to bringga back up togcrit

a . The number of spikes therefore depends on how much
time ga has had to recover and thus encodes the time1t that has passed between the two trigger
signals, see figure4. Such a relationship between spike number in a burst and preceding inter-
burst interval has been observed in the developing chick spinal cord [40] where a model based
on the same principle dynamics, fast and slow feedback, has been successfully applied [41],
although based on network feedback, not cell-intrinsic mechanisms.

An important aspect of this encoding scheme is that the timescale of the temporal
integration is set by the adaptation time constantτa. This can also be seen by the following
argument: the number of spikesN that a burst contains is determined by how many incremental
steps ofg(0)

a it takes to bringga back up to the critical valuegcrit
a . N is thus a function of the

level of ga at the time of a new trigger signal, which itself is a function of the preceding interval
1t between trigger signals,ga = gcrit

a · exp(−1t/τa). It therefore follows thatN is a function of
1t/τa, N = f (1t/τa). In figure4, this is demonstrated by simulations with different values of
τa. The fact thatτa is essentially a scaling parameter of the temporal integration will be important
below when we will use bursting neurons with differentτa.

There are, of course, limits to the range over which temporal intervals are well encoded
by the spike count in the burst. This is apparent in the fact that the spike count1t/τa levels
off at high 1t/τa in figure 4, which occurs becausega(t) has practically already decayed to
zero after some time and further waiting for the next trigger signal hardly changes its level.
Also, for very short intervals1t , resolution is limited by the fact that each trigger signal leads
to a minimum response, here three spikes. Thus, naturally, temporal integration works best for
timescales similar to the adaptation constant.

In this intermediate regime, the resolution of this encoding scheme is limited by the fact that
the spike numbers come as discrete integer values. Each spike number therefore corresponds to
a range of1t/τa, as apparent in figure4(b). These ranges overlap because of the noise in the
model and some residual dependence on previous spiking history (for example, the shot noise
induced by the previous burst). Barring noise sources, the resolution depends on the maximum
number of spikes that can appear in a burst (here around 15). The more potential spikes, the
more discrete levels that can be used for encoding1t/τa. Larger spike counts can, in principle,
be achieved by reducing the negative feedbackg(0)

a . On the downside, however, bursts with more
spikes last longer, which itself reduces the minimal temporal interval between discernible bursts.
The strength of the negative feedback must thus represent a compromise between maximizing
resolution and minimizing burst duration.
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Figure 4. Relationship between time interval1t and spike count. Simulations of
the bursting neuron were performed for three different adaptation time constants
τa. On the left, the spike counts of the bursts elicited by a trigger signal are
shown depending on the preceding interval1t between trigger signals. For each
time constant, the spike count encodes1t well, but with a different functional
relation. On the right, the abscissa is rescaled byτa for each dataset, revealing
that a common functionf (1t/τa) underlies the relation between spike count and
interval length. All parameters were the same as in the simulation for figure3,
except for the variations inτa.

4. Network for grasshopper song detection

With the temporal integration properties of the bursting neurons in place, we can now construct
a network that applies these features to the problem of the grasshopper song detection where
communication song templates such as those shown in figure1(a) with syllable durations and
pause durationp form the inputs. We do so by assuming that both the onset and offset of a
high-intensity sound, such as a syllable, lead to trigger signals, which may be provided by two
neurons that briefly burst at sound onset and offset, respectively. The trigger signals are received
by two bursting neurons (neurons 1 and 2 in figure5); one of them receives the trigger only at
the onset of the syllable, the other at both onset and offset. The first neuron is thus sensitive
to the periods+ p of the repetitive song signal; the second neuron encodes the pause duration
p at the syllable onset and the syllable durations at its offset. At syllable onset, both neurons
are triggered and fire bursts with spike numbers ofN1 andN2, respectively. Note that neuron 1
functions as an information buffer for the syllable durations. Analogous to the ‘many are equal’
computation applied in the Hopfield–Brody network, we here use the approach that detection
should take place if the activities of the two bursting neurons are equal,N1 = N2. The task of
the other neurons in the network is to detect this equality, which will be discussed below.

According to the earlier scaling considerations, the adaptation time constantτa sets the
scale of temporal integration. If the adaptation time constants of the two bursting neurons areτa,1

andτa,2, respectively, we find thatN1 andN2 are approximately given byN1 = f ((s+ p)/τa,1)

and N2 = f (p/τa,2) with the same functionf for both neurons.N1 = N2 thus follows if
τa,1/τa,2 = 1 +s/p. Therefore, equal activity of the two neurons occurs for a given ratio of
syllable and pause duration, and this ratio depends on the ratio of the adaptation time constants.
If, for example, the network should detect a ratio ofs : p = 4 : 1, the appropriate ratio of
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Figure 5. Schematic drawing of the four-neuron network for grasshopper song
detection. Neurons 1 and 2 are bursting neurons with adaptation time constants
τa,1 and τa,2, respectively. Neurons 3 and 4 are standard leaky integrate-and-
fire models without the feedback conductancesgp and ga. The output of the
network is given by the activity of neuron 4, which should fire for the correct
ratio of syllable and pause duration. Neuron 1 is excitatory, neurons 2 and 3 are
inhibitory. Inputs into the network are given by short trigger signals at the onset
and offset of the song syllables. For neurons 1 and 2, bursts are triggered; neuron
4 receives input at syllable onset with a short delayτdelay, which drives it across
the threshold if neurons 1 and 2 provide balanced excitation and inhibition. If
excitation from neuron 1 is stronger than inhibition from neuron 2, neuron 3
becomes active and provides strong inhibition, which shuts off neuron 4.

the adaptation time constants isτa,1 : τa,2 = 5 : 1. As the ratio of syllable and pause duration
is independent of the absolute timescale, the foundation is laid out for time-warp invariant
detection.

The task now is to read out the activity of the two bursting neurons so that the network
detects when their activity is equal. We here model this read-out of equal spike count by a
balanced push-pull mechanism between excitation and inhibition, but other schemes are also
feasible. To do so, we connect two simple (non-bursting) leaky integrate-and-fire neurons
(neurons 3 and 4 in figure5) to our two bursting neurons. Neuron 3 mediates inhibition; neuron
4 functions as the network output and signals by its activity detection of the preferred song
structure. All synaptic connections are modeled by adding terms

gsyn(t) · R ·
(
Vsyn− V(t)

)
(14)

to the differential equation for the membrane potential. The synaptic reversal potentialVsyn for
excitatory synapses isVsyn,exc > Vthresh, and for inhibitory synapses it isVsyn,inh < Vthresh. The
synaptic conductances are modeled by an exponential rise and decay after each presynaptic
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spike at timetsp:

gsyn(t) = g(0)
syn ·

τrise

τdec− τrise
·
(
e−(t−tsp)/τdec − e−(t−tsp)/τrise

)
. (15)

Again, forτrise = τdec= τ , this expression simplifies tog(0)
syn · (t − tsp)/τ · e−(t−tsp)/τ . The synaptic

strengthsg(0)
syn are set independently for excitatory and inhibitory synapses at each neuron so that

a single spike yields about equally effective inhibition or excitation.
Excess activity of either neuron 1 or 2 results in inhibition of the output neuron; only

balanced activity between those two neurons lets the output neuron become active. Figure6
shows sample voltage traces of all four neurons in the network for a syllable durations = 120 ms
and three different pause durationsp = 20, 35 and 50 ms. Only for the intermediate pause
duration do the two bursting neurons have the same spike count at syllable onset, leading to
spiking of the output neuron; for the short pause, neuron 2 has fewer spikes than neuron 1, which
leads to activity of neuron 3 and therefore inhibition to neuron 4; for the long pause, neuron 2
has more spikes than neuron 1, so that inhibition for neuron 4 is stronger than excitation.

We can test the performance of the network model by running simulations for many
different combinations of syllable and pause duration and counting the spikes that are elicited by
the output neuron 4. This is shown in figure7 for three different combinations of adaptation time
constantsτa,1 andτa,2 with ratios of 3 : 1, 5 : 1 and 9 : 1, respectively. In each case, the successful
time-warp invariant detection is visible by the diagonal region of syllable-pause combinations
that yield strong activity of the output neuron. As expected, the preferred ratios of syllable and
pause duration are different in the three cases and indeed match the prediction that follows from
the ratios of the adaptation time constants. The resolution of the detector manifests itself in the
width of these diagonal response regions. This width results from a combination of the internal
noise and the limited resolution of the bursting neurons 1 and 2 (cf figure4). As discussed above,
their integer spike counts are unaffected by slight changes in the duration of the integrated
temporal window. Consequently, the read-out is insensitive to variations in syllable and pause
durations over some range. More precisely, the diagonal response regions are composed of
smaller response fields that line up along the diagonal and that each correspond to a different
number of spikes that is produced by both neurons 1 and 2. These response fields merge into
each other, however, because of noise.

5. Conclusions

Even the small auditory systems of insects are capable of astonishing pattern detection
performances [14]. The limited size of these systems makes them an appealing model system
for an attempt to study principles of temporal integration in detail [42]. The network model
presented here can be viewed as a proof of principle that small networks with few neurons
can perform such a highly complex task as the time-warp invariant detection of rhythmic
sound patterns. The network applies only generic neuronal characteristics, such as integrate-
and-fire dynamics, conductances that provide positive and negative feedback, and a balance of
excitatory and inhibitory inputs. Nonetheless, complex and computationally useful dynamics
arise, including bistability, intrinsic bursting, and reliable temporal integration over tens and
hundreds of milliseconds. Despite this complexity, the network is easy to tune; by adjusting only
the adaptation time constants as key parameters, the target ratio of acoustic feature durations can
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s=120 ms, p=20 ms s=120 ms, p=35 ms s=120 ms, p=50 ms

Figure 6. Sample voltage traces from the four network neurons for three different
combinations of syllable durations and pause durationp. Bursts of spikes occur
at onset and offset of the syllables. For neurons 1 and 2, the insets show enlarged
pictures of the bursts at syllable onset. Only for the case in the center column, the
bursts contain the same number of spikes, and hence neuron 4 becomes active.
The parameters for all neurons were the same as used for figure3 except for
τa,1 = 300 ms andτa,2 = 60 ms, the omission of the feedback conductances for
neurons 3 and 4, and an increase ofτm to 30 ms for neuron 4. The parameters for
modeling the synapses were:Vsyn,exc = 0 mV, Vsyn,inh = −60 mV, g(0)

1 to 3 = 50 nS,
g(0)

1 to 4 = 200 nS, g(0)

2 to 3 = 110 nS, g(0)

1 to 4 = 440 nS, g(0)

3 to 4 = 500 nS, τdelay= 7 ms,
τrise = 0.5 ms andτdec= 3 ms, except for synapses on to neuron 4, for which
τrise = τdec= 5 ms.

easily be chosen. For a biological system, this has the advantage that simple learning rules may
suffice to bring the network towards correct detection of behaviorally relevant signals.

The signal detection strategy of the network is based on comparing the duration of the
pause to the preceding syllable. The network could thus also detect signals that contain a wide
variety of syllable and pause durations as long as locally neighboring syllables and pauses have
the correct ratio. In fact, this results in a more general type of time-warp invariance than the
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Figure 7. Performance of the four-neuron network for grasshopper song
detection for three different ratios ofτa,1 andτa,2. In each case,τa,2 was set to
60 ms, whileτa,1 was set to 180 ms (left), to 300 ms (center), or to 540 ms (right).
The ratiosτa,1 : τa,2 of 3 : 1, 5 : 1 and 9 : 1 correspond to optimals : p ratios
of 2 : 1, 4 : 1 and 8 : 1, respectively, which are displayed by the dashed lines.
The performance of the network is measured by the number of spikes of neuron
4 over ten periods of the sound signal for many different syllable and pause
durations. In each case, the diagonal region of strong activity shows that the
network performs time-warp invariant detection of the syllable-pause structure,
and the detected syllable-pause ratio is close to the expectation obtained from the
ratio of the adaptation time constants. All parameters, except for the adaptation
time constants and the syllable and pause durations, were the same as in the
simulations for figure6.

linear scaling applied to the full signal. Moreover, this finding can be used as a prediction for
behavioral experiments with grasshoppers in which the detection of such non-globally warped
patterns is tested.
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