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Ganglion cells in the vertebrate retina integrate visual information over their receptive fields. They do so
by pooling presynaptic excitatory inputs from typically many bipolar cells, which themselves collect
inputs from several photoreceptors. In addition, inhibitory interactions mediated by horizontal cells
and amacrine cells modulate the structure of the receptive field. In many models, this spatial integration
is assumed to occur in a linear fashion. Yet, it has long been known that spatial integration by retinal gan-
glion cells also incurs nonlinear phenomena. Moreover, several recent examples have shown that nonlin-
ear spatial integration is tightly connected to specific visual functions performed by different types of
retinal ganglion cells. This work discusses these advances in understanding the role of nonlinear spatial
integration and reviews recent efforts to quantitatively study the nature and mechanisms underlying
spatial nonlinearities. These new insights point towards a critical role of nonlinearities within ganglion
cell receptive fields for capturing responses of the cells to natural and behaviorally relevant visual stimuli.
In the long run, nonlinear phenomena of spatial integration may also prove important for implementing
the actual neural code of retinal neurons when designing visual prostheses for the eye.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The vertebrate retina represents the input stage of the visual
system. Here, light is transformed by photoreceptors into electrical
signals, which are then processed by a complex neural network of
horizontal cells, bipolar cells, and amacrine cells (Wässle, 2004;
Masland, 2012). Finally, retinal ganglion cells collect the outcomes
of these network operations and encode them in patterns of spikes
for transmission along the optic nerve to various downstream
brain regions.

The signal processing by its neural network means that the ret-
ina is not the equivalent of a CCD camera for the rest of the brain.
While much of the processing and signal transmission proceeds in
a spatially ordered way, it does not occur in a simple pixel-by-pixel
fashion. Instead, the retinal network provides convergent as well as
divergent signaling pathways, a large diversity in the anatomy and
physiology of the different neuron types, a high degree of adaptiv-
ity to prevailing lighting conditions, and different types of nonlin-
ear operations at both cellular and synaptic levels. Together, these
circuit properties endow the retina with complex signal processing
capabilities, which have only partially been elucidated and whose
characteristics remain a central topic of current research in neuro-
science. The spike patterns of ganglion cells do not simply repre-
sent the level of incident light at a certain spot within the visual
field, but rather can encode more complex features of the visual
stimulus. Several recent examples have shown that the specific
computations underlying the detection and representation of these
features can be understood based on how the respective ganglion
cells pool visual inputs over space and time.

These findings have called renewed attention to the critical role
of nonlinearities in retinal signal integration (Gollisch and Meister,
2010; da Silveira and Roska, 2011; Schwartz and Rieke, 2011).
Although it has long been known that nonlinear integration exists
in the retina and that ganglion cells can distinctly differ in whether
they act linearly or nonlinearly (Enroth-Cugell and Robson, 1966),
there are only few examples of quantitative assessments of the rel-
evant nonlinearities. This calls for new efforts and approaches to
take nonlinear signal integration explicitly into account in both
experimental and modeling studies. Here, we discuss some emer-
gent ideas regarding the computational roles, the functional forms,
and the experimental assessment of nonlinearities in the receptive
fields of retinal ganglion cells.
2. Signal convergence and integration in the retina

Ganglion cells receive their excitatory input from bipolar cells,
which in turn are driven by photoreceptors. This structure leads
to a high degree of signal convergence onto single ganglion cells
(Hartline, 1940b; Barlow, 1953), leading to the pooling of signals

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jphysparis.2012.12.001&domain=pdf
http://dx.doi.org/10.1016/j.jphysparis.2012.12.001
mailto:tim.gollisch@med.uni-goettingen.de
http://dx.doi.org/10.1016/j.jphysparis.2012.12.001
http://www.sciencedirect.com/science/journal/09284257
http://www.elsevier.com/locate/jphysparis


T. Gollisch / Journal of Physiology - Paris 107 (2013) 338–348 339
from more than a hundred bipolar cells by some ganglion cells
(Freed and Sterling, 1988). Bipolar cells of the same type are orga-
nized in fairly regular spatial patterns (Lin and Masland, 2005;
Wässle et al., 2009), and their dendritic trees – and correspond-
ingly their receptive fields – are typically much smaller than that
of the postsynaptic ganglion cell.

Bipolar cells, in turn, collect inputs in a similar fashion from
typically several photoreceptors (Freed et al., 1987; Tsukamoto
et al., 2001). This stage therefore provides another important site
of stimulus integration. Both sites of spatial signal integration –
from photoreceptors to bipolar cells and from bipolar cells to gan-
glion cells – are modulated by inhibitory interactions, mediated by
horizontal cells and amacrine cells, respectively. These add lateral
interactions over space and thereby directly influence spatial inte-
gration. But they also act locally by modulating or antagonizing the
feed-forward excitation of individual bipolar cells and thereby
influence which local signals are integrated by ganglion cells.

How ganglion cells integrate signals over their receptive fields
is a question nearly as old as the history of recording electrical sig-
nals from the retina (Adrian and Matthews, 1927a; Hartline,
1940b). Early investigations of optic nerve responses in the eel
(Adrian and Matthews, 1927b, a) and of signals from individual
cells in frog retina (Hartline, 1940a; Barlow, 1953) already asked
whether the retina could make use of pooling signals over space.
Indeed, it was found that stimulating larger areas reduced the re-
quired stimulus intensity for producing a certain optic nerve re-
sponse or for triggering spikes by an individual ganglion cell. In
these early investigations, this spatial integration was assumed
to occur in an approximately linear fashion, at least for small en-
ough stimulation areas; yet high-precision measurements of stim-
ulus integration were still lacking.
3. Linear X cells and nonlinear Y cells

That both linear and nonlinear spatial integration occur in the
retina was later shown by the seminal work of Enroth-Cugell and
Robson (1966) who categorized ganglion cells in the cat retina as
either X cells or Y cells, depending on their response characteristics
under stimulation with reversing gratings. While X cells and Y cells
have first been characterized in the cat retina and their distinction
appears particularly pronounced in this species, the classification
has also been extended to various other species, such as guinea
pig (Demb et al., 1999; Zaghloul et al., 2007), rabbit (Caldwell
and Daw, 1978; Hamasaki et al., 1979; Famiglietti, 2004), and
monkey (de Monasterio, 1978; Petrusca et al., 2007; Crook et al.,
2008). Using examples recorded in mouse retina, Fig. 1 exemplifies
the experimental distinction between linear and nonlinear gan-
glion cells based on stimulation with reversing gratings.

This classical approach for analyzing spatial integration works as
follows. A spatial grating – sinusoidal or square-wave – is shown to
the retina and periodically reversed in polarity (or alternatively
turned on and off), for example once every half second. The spiking
responses of a measured ganglion cell are then analyzed according
to whether there is an increase in firing rate to either of the grating
reversals or to both. This measurement is then repeated for different
spatial phases of the grating, that is, for different locations of the
bright and dark regions. For a linearly integrating X cell (Fig. 1A),
one finds that, for each grating position, only one of the two reversal
directions positively activates the cell, namely the reversal direction
that increases the preferred contrast within the receptive field – po-
sitive contrast for On cells and negative contrast for Off cells. The
other reversal direction rather suppresses the cell’s firing below
the baseline level. Furthermore, one can typically identify grating
positions that balance both contrasts over the receptive field so that
neither of the two reversals substantially excites the cell.
By contrast, the responses of nonlinearly integrating Y cells
(Fig. 1B) are characterized by positive responses for both directions
of the grating reversals for several grating positions, in particular
when positive and negative contrast are balanced over the recep-
tive field. These response characteristics cannot be explained by
a model with linear integration of light signals over space. More
formally, the distinction between linear X cells and nonlinear Y
cells is often based on computing the amplitudes of the first and
the second harmonic of the firing rate in response to the periodic
grating reversals (Hochstein and Shapley, 1976). X cell responses
are dominated by the first harmonic (Fig. 1C), whereas the fact that
Y cells can respond to both grating reversals leads to frequency
doubling and an often dominant second harmonic in the firing rate
profile (Fig. 1D).

Note that the linear spatial integration in X cells does not im-
ply that these cells respond to the two opposite grating reversals
with firing rate profiles that are equal in magnitude with oppo-
site signs, as would be expected for a completely linear system.
In fact, retinal ganglion cells, like most other neurons in the ner-
vous system, display a nonlinear dependence of the firing rate on
stimulus strength simply because the spiking itself is subject to a
threshold and potentially saturation. Thus, positive responses
upon grating reversals are typically more pronounced than the
amount of suppression observed for the opposing reversal. This
can be viewed as a nonlinear transformation of the integrated
activation signal. This nonlinearity, however, does not affect
how signals are integrated over space prior to this output trans-
formation. We will return to this distinction between different
nonlinear stages in the stimulus–response relation of ganglion
cells below.

The separation between X cells and Y cells does not always ap-
pear clear-cut and may in some systems rather represent the ex-
tremes of a continuum with different degrees of nonlinear
integration, as reported, for example, for mouse retina (Carcieri
et al., 2003). Moreover, the fact that anatomical investigations typ-
ically distinguish around ten to twenty different types of ganglion
cells (Masland, 2001; Rockhill et al., 2002; Dacey, 2004; Kong et al.,
2005; Coombs et al., 2006; Field and Chichilnisky, 2007; Masland,
2012) suggests that the classification of X and Y cells represents
only a coarse categorization, which might allow further division
into subtypes, for example, by refined measurements of the spatial
integration characteristics.

The finding of nonlinearly integrating ganglion cells has led to
the development of subfield models, which describe the receptive
field structure of Y cells as composed of spatial subfields whose
signals are nonlinearly combined (Fig. 2). These model efforts were
initiated by measurements of Y cell responses to sinusoidal tempo-
ral modulations of different spatial patterns (Hochstein and Shap-
ley, 1976). In particular, stimuli that superimposed several
sinusoidal modulations were successfully applied to tease apart
different filtering stages and to characterize the nonlinear transfor-
mations in Y cells (Victor et al., 1977; Victor and Shapley, 1980).
This led to the description of Y cells by a so-called sandwich model,
in which a nonlinear transformation occurs between two linear fil-
tering stages (Victor and Shapley, 1979). A detailed analysis of the
model components showed that the filters of the first stage had
center–surround characteristics and that the subsequent nonlinear
transformations occurred in a spatially local fashion. This sug-
gested that bipolar cells form these filter elements and that their
signals undergo a nonlinear transformation, which was found to
have a rectifying nature (Victor and Shapley, 1979; Enroth-Cugell
and Freeman, 1987). Until today, nonlinear pooling of subfield sig-
nals has remained the prime framework for modeling spatial non-
linearities in ganglion cells, and there is good evidence now that
the subfields indeed correspond to the receptive fields of presynap-
tic bipolar cells (Demb et al., 1999).



0

200

0

200

0

200

0

200

0

200

0

200

0

200

0 560 1120
0

200

0

500

1000

0

200

0

200

0

200

0

200

0

200

0

200

0

200

0 560 1120
0

200

0° 90° 180° 270°
0

500

Time (ms)

0 560 1120
Time (ms)

0 560 1120
Time (ms)

Sp
ik

e 
ra

te
 (H

z)
Phase 0°

Phase 45°

Phase 90°

Phase 135°

Phase 180°

Phase 225°

Phase 270°

Phase 315°

F1

F2

Po
w

er
 (a

rb
. u

ni
t)

Phase Phase 

A B

C D

Reversing sinusoidal grating Reversing sinusoidal grating

Time (ms)

0° 90° 180° 270°

Fig. 1. Responses of an X cell and a Y cell in mouse retina to reversing gratings. (A) Firing rate profiles of an X cell recorded extracellularly with a multi-electrode array from
isolated mouse retina under stimulation with reversing gratings at different spatial phases. The cell never responds to both reversal directions and shows grating phases
without any substantial response. This indicates linear spatial integration. (B) Same as (A), but for a Y cell. The fact that the cell always responds well to both grating reversals
indicates nonlinear spatial integration. (C) First and second Fourier components of the response profiles of the X cell. Except for the spatial phases where the cell does not
respond to the grating reversals, the responses are dominated by the fundamental frequency F1, again confirming that this cell is a linearly integrating X cell. (D) First and
second Fourier component of the response profile of the Y cell. The responses are dominated by the second Fourier component F2, confirming that this cell is a nonlinearly
integrating Y cell.
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4. Spatial integration in linear–nonlinear cascade models

As an alternative to these characterizations of ganglion cell re-
sponses with grating stimuli and sinusoidal temporal modulations,
investigations based on white-noise stimulation and analyses with
linear–nonlinear (LN) cascade models (Hunter and Korenberg,
1986; Sakai, 1992; Meister and Berry, 1999; Chichilnisky, 2001;
Paninski, 2003) have garnered much popularity and advanced the
understanding of retinal signal processing. In this approach, the
stimulus–response relation of retinal ganglion cells is phenomeno-
logically described by a sequence of a linear stimulus filter and a
subsequent nonlinear transformation of the filter output. The re-
sult of this LN model is interpreted as the firing rate or as the prob-
ability of spike generation. The input to the LN model can be a
purely temporal sequence of light intensities, a spatio-temporal
stimulus with spatial structure as well as temporal dynamics, or
also include other stimulus dimensions, such as chromatic
components. In each case, the linear filter provides information
about which subset of stimulus components is relevant for activat-
ing the cell. The filter is thus related to the cell’s temporal, spatial,
or spatio-temporal receptive field. The nonlinear transformation
describes how the activation of the receptive field is translated into
neuronal activity and thus measures the neuron’s overall sensitiv-
ity and captures its response threshold, gain, and potential
saturation.

The particular appeal of this model stems from the relative ease
with which the model components can be obtained in physiologi-
cal experiments. The linear filter, for example, is readily obtained
as the spike-triggered average in response to white-noise stimula-
tion (Chichilnisky, 2001; Paninski, 2003; Schwartz et al., 2006), and
the nonlinear transformation can subsequently be found by deter-
mining how the linear filter predictions relate to the actual ob-
served firing rate (Chichilnisky, 2001; Schwartz et al., 2006). In
this way, the LN model has found a large number of applications,



Fig. 2. Schematic depictions of subfield models to account for nonlinear spatial
integration by ganglion cells. (A) Simplified version of a classical phenomenological
subfield model (Victor and Shapley, 1979). Subfields are represented by overlapping
Gaussian curves, which represent a weighted linear summation of light signals
within each subfield. The subfield signals then undergo a nonlinear transformation,
here half-wave rectification, before summation. Note that the original subfield
model also contains a linear component of the receptive field, modeled by an
additional, wider Gaussian curve, as well as a component to account for surround
suppression. (B) Subfield model depiction based on simplified retinal circuitry. The
subfields correspond to the receptive fields of bipolar cells B, which tile the
receptive field of the ganglion cell G. The bipolar cells are thought to integrate light
patterns linearly, but their signals undergo a nonlinear transformation, here again
half-wave rectification, before pooling by the ganglion cell. Note that other retinal
cell types, in particular amacrine cells, are not considered for simplicity.
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including assessments of spatial and temporal receptive field prop-
erties (Field and Chichilnisky, 2007), classification of different gan-
glion cell types (Segev et al., 2006; Field and Chichilnisky, 2007;
Farrow and Masland, 2011; Marre et al., 2012), and characteriza-
tion of contrast adaptation (Kim and Rieke, 2001; Baccus and Mei-
ster, 2002; Zaghloul et al., 2005). For more complex stimuli,
including natural images and movies, more elaborate techniques
exist for matching LN models to data, based on information theory
or maximum-likelihood methods (Paninski, 2003, 2004; Sharpee
et al., 2004; Pillow and Simoncelli, 2006). Furthermore, the basic
form of the LN model has further been extended by including ex-
plicit spike generation dynamics together with feedback effects
of the cell’s own spiking activity (Keat et al., 2001; Pillow et al.,
2005) as well as interactions between nearby ganglion cells (Pillow
et al., 2008). These models have been shown to often provide rea-
sonable predictions of a ganglion cell’s spiking responses, at least
under the particular type of white-noise stimulation used for
obtaining the model parameters. The spatio-temporal version of
the LN model has even been shown to be a promising starting point
for improving the activity patterns of ganglion cells in prosthetic
approaches (Nirenberg and Pandarinath, 2012). Yet, in all these
versions of the LN model, it is the linear filter stage that accounts
for stimulus integration. Thus, stimulus integration is implicitly as-
sumed to be linear under these approaches.

This leads one to ask how well the LN model actually works as a
framework for capturing the spatio-temporal response properties
of ganglion cells, in particular for cells that show nonlinear spatial
integration. First, it is important to note that the linear spatio-tem-
poral filter obtained by a spike-triggered-average analysis typically
provides accurate information about the receptive field shape even
though nonlinearities within the receptive field are not accounted
for by the LN model. Beyond characterizing the receptive field,
however, the question arises how well the obtained LN model
can be used for predicting the spiking response of a ganglion cell.
The general lore appears to be that LN models can yield reasonable
predictions when probed with the same type of spatially coarse,
temporally broad-band noise stimuli as used for fitting the model,
whereas accurate predictions of responses to natural stimuli have
remained elusive (Schwartz and Rieke, 2011).

One reason for this may lie in the fact that natural stimuli con-
tain spatial correlations in the stimulus (Ruderman and Bialek,
1994) as well as abrupt transitions, owing to the presence of
objects and their boundaries. Across an object boundary, for exam-
ple, one half of a receptive field may receive strong positive activa-
tion while the other experiences strong negative activation. In this
case, a putative nonlinear thresholding of input signals would lead
to a strong spiking response, following the positively activated in-
puts, whereas linear integration might result in complete cancel-
ation of positive and negative activation and thus no spikes. Such
stimulus patterns therefore emphasize the difference between lin-
ear and nonlinear spatial integration.

For Gaussian white-noise stimulation, on the other hand, these
types of patterns are rare. Rather, individual spatial stimulus com-
ponents are activated independently of each other, and at any
point in time, most components will be only weakly activated.
Thus, differences between models of linear and nonlinear stimulus
integration tend to be smaller and less systematic than under the
strong spatial structure of natural scenes, and spatio-temporal LN
models may provide reasonable predictions of ganglion cell re-
sponses under white-noise stimulation, even without nonlinear
substructure of the receptive fields, at least when the spatial stim-
ulus structure is coarse enough so that individual stimulus compo-
nents can provide sufficient drive to trigger the ganglion cells.
Future investigations should make these considerations more
quantitative. In fact, a better understanding of spatial processing
by retinal ganglion cells should emerge from systematically study-
ing under what stimulus conditions spatio-temporal LN models
work or fail in predicting responses, which stimulus patterns lead
to systematic failures, and which types of nonlinear extensions can
overcome such shortcomings.

Nonetheless, even pure Gaussian white-noise stimulation can
be used to probe the linearity of stimulus integration by a simple
extension of the spike-triggered-average analysis. While the
spike-triggered average is restricted to providing a single linear fil-
ter, an analysis of the spike-triggered covariance (STC) matrix can
result in several filters (Brenner et al., 2000; Paninski, 2003; Bialek
and de Ruyter van Steveninck, 2005; Rust et al., 2005; Schwartz
et al., 2006; Samengo and Gollisch, 2012). These form the basis
of a multi-filter LN model, in which several parallel filters perform
stimulus integration and feed their results into a multi-dimen-
sional nonlinearity (Fig. 3A). If STC analysis results in a single filter
only, stimulus integration under the applied stimulus conditions is
mostly linear; if multiple filters are obtained, this indicates nonlin-
ear effects of stimulus integration.

If stimuli are not Gaussian (or more specifically not spherically
symmetric (Samengo and Gollisch, 2012)), for example if natural
stimuli are applied, alternatives to STC analysis can be used for
determining whether a single filter is sufficient or whether and
which multiple filters are required for describing stimulus integra-
tion. These alternatives rely on information theory, maximum like-
lihood, or Bayesian inference (Paninski, 2003; Sharpee et al., 2004;
Pillow and Simoncelli, 2006; Park and Pillow, 2011; Rajan et al.,
2012). Note, though, that obtaining multiple filters in the STC anal-
ysis does not mean that a multi-filter LN model is the only or sim-
plest way of extending the LN model to fit the data; a single-
pathway multi-stage cascade model, such as the sandwich model
discussed above or a nested LN model, corresponding to an LNLN
cascade, could provide simple alternatives, underscoring the need
to consider different model structures and analytical approaches.

A typical example of STC analysis for a salamander retinal gan-
glion cell under stimulation with spatio-temporal white noise is
shown in Fig. 3B–D, here using only one spatial dimension so that
the stimulus consists of flickering stripes. The spike-triggered aver-
age (Fig. 3B) identifies the cell as an Off-type neuron. Spike-trig-
gered covariance analysis, however, provides a more refined
picture, yielding three spatio-temporal filters (Fig. 3C). These filters
differ mostly in their pronounced spatial structure, revealing
spatially antagonistic components even within the receptive field



Fig. 3. Spike-triggered average and spike-triggered covariance analysis for a salamander retinal ganglion cell under spatio-temporal stimulation. (A) Structure of the LN
model. The stimulus (left) is spatio-temporal flicker of stripe patterns, where the light intensity of each stripe for each frame is drawn independently from a Gaussian
distribution. The model assumes that the stimulus is filtered by a set of N parallel spatio-temporal filters ki. In the case of spike-triggered-average analysis, only a single filter
is considered. The outputs of all filters, indicated by the convolutions ki � s of the filters with the stimulus s, are fed into a multi-dimensional nonlinearity f, whose output
yields the time-dependent firing rate of the model. (B) Spatio-temporal spike-triggered average of an Off-type salamander retinal ganglion cell measured with flickering
stripes. (C) Three filters extracted from a spike-triggered covariance analysis for the same cell. To reduce the dimensionality of stimulus space for this analysis, only the
central five stripes that span the receptive field center of the cell were analyzed. The filters show distinct spatial structure, containing regions with opposite signs. By contrast,
along the temporal dimension, the filters largely retain the homogeneous structure of the spike-triggered average. This indicates that the receptive field of this cell is strongly
affected by nonlinear operations. (D) Eigenvalue spectrum of the spike-triggered covariance analysis of this cell. The three filters of (C) are obtained by an eigenvalue analysis
of the spike-triggered covariance matrix as those eigenvectors that correspond to eigenvalues that deviate from the continuous spectrum of the remaining eigenvalues. The
three relevant eigenvalues are marked by colored circles, matching the colors of the frames of the corresponding filters in (C).
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center. This analysis thus indicates that nonlinear spatial integra-
tion plays a major role for determining the spike response in this
type of ganglion cell.

However, determining the nature of these nonlinearities is typ-
ically difficult, at least when more than two filters are found to be
relevant, because large amounts of data are required and because
nonlinearities of stimulus integration have to be separated from
the output nonlinearity of spike generation. Yet, STC analysis can
provide a useful starting point for further investigations of nonlin-
ear stimulus integration. An interesting case where STC analysis
has provided the basis for detailed investigations of input integra-
tion by retinal ganglion cells concerns On–Off ganglion cells, which
are characterized by their responses to both increases and de-
creases in light intensity. For these cells, it has been shown that
the stimulus sequences that triggered spikes can form two clusters
in stimulus space, according to whether On-type or Off-type
stimulation was primarily responsible for eliciting a given spike
(Fairhall et al., 2006; Geffen et al., 2007; Gollisch and Meister,
2008a). Analogously, interesting future extensions of STC analysis
might aim at identifying actual physiological pathways underlying
nonlinear spatial integration, for example corresponding to
individual bipolar cells.

The LN model provides a particularly compact description of
ganglion cell responses, with easy-to-obtain parameters, capturing
many features of retinal processing. Yet, when a closer correspon-
dence with the elements of retinal anatomy is desired, other mod-
eling frameworks are likely more appropriate. Given that bipolar
cell input into Y cells already corresponds to an LN model (Victor
and Shapley, 1979), a sandwich model, corresponding to an LNL
cascade, may be a suitable alternative, which can be further ex-
panded to an LNLN cascade in order to capture effects of the gan-
glion cell’s own output nonlinearity. More generally, including
further details of the retinal circuitry may be desirable, depending
on the demands of the research question (Herz et al., 2006), such as
synaptic dynamics (Jarsky et al., 2011; Ozuysal and Baccus, 2012),
gain control (Shapley and Victor, 1981; Berry et al., 1999; Wohrer
and Kornprobst, 2009), neuronal morphology (Brown et al., 2000;
Schwartz et al., 2012), or explicit inhibitory interactions (Thiel
et al., 2006; Baccus et al., 2008). In fact, it has recently been shown
that by combining nonlinear signal transmission with anatomical
information about the locations of presynaptic inputs from bipolar
cells onto the dendritic tree of mouse On alpha cells, responses of
these cells to a diverse set of visual stimuli can be successfully
predicted (Schwartz et al., 2012).
5. Circuit mechanisms for spatial signal integration

The primary site within the retinal circuitry for nonlinear spa-
tial integration appears to be in the retina’s inner plexiform layer
where bipolar cells transmit their signals to their postsynaptic
partners, ganglion cells and amacrine cells. The nonlinear effects
are likely to arise in the synaptic transmission at the bipolar termi-
nals (Baccus et al., 2008; Molnar et al., 2009; Werblin, 2010), which
more easily increase their release of neurotransmitter than de-
crease it from baseline. In addition, recent findings have indicated
that bipolar cell terminals may even produce spiking activity (Ba-
den et al., 2011; Dreosti et al., 2011) and thereby further enhance
the nonlinearity of signal transmission. Furthermore, voltage sig-
nals within the bipolar cells already display nonlinear effects in
the form of saturation at high enough contrast levels (Burkhardt
et al., 1998).

Prior to bipolar cell signaling, however, the retina appears to
process light stimuli largely in a linear fashion, at least over some
relevant contrast range. Photoreceptors respond to light largely in
a linear fashion (Baylor et al., 1974), and the ribbon synapses be-
tween photoreceptors and bipolar cells are particularly suited for
linear signal transmission, as they can sustain high baseline
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release rates and respond to gradual changes in membrane
potential via a linear relationship between internal calcium
concentration and transmitter release (Witkovsky et al., 1997;
Thoreson et al., 2003). Correspondingly, several measurements
in horizontal cells (Tranchina et al., 1981) and bipolar cells have
found support for a linear representation of light signals at this
level. Light responses in bipolar cells, for example, can be well
captured by linear filter models in the catfish retina (Sakai and
Naka, 1987) as well as in the salamander retina (Rieke, 2001;
Baccus and Meister, 2002), consistent with the approximately
linear current–voltage relation in isolated bipolar cells in the
salamander (Mao et al., 1998).

One exception to this rule of linear signal transmission to bipo-
lar cells, however, has been found in the processing at low light
levels, with important functional consequences. In the mouse ret-
ina, the synapses between rods and rod bipolar cells threshold the
signal, with the effect that much of the noise is cut off so that de-
spite a certain accompanying loss in the signal, detection of single
photon events occurs with nearly optimal signal-to-noise ratio
(Field and Rieke, 2002; Berntson et al., 2004; Sampath and Rieke,
2004). As in the examples of nonlinear integration by ganglion
cells, nonlinear integration of photoreceptor signals by rod bipolar
cells is essential for this function; the nonlinearity discards unreli-
able information and selects signals that provide the best evidence
for the relevant signal to be detected, here simply the occurrence of
a photon.
6. Functional roles of nonlinear spatial integration

Several recent findings of particular ganglion cell types whose
activity patterns encode specific relevant visual features have dem-
onstrated the connection of nonlinear spatial integration to neural
computation. It is the nonlinear nature of signal processing that
endows the investigated cell types with their computational char-
acteristics, making them selective to certain stimulus features
while discarding information about others (Gollisch and Meister,
2010; da Silveira and Roska, 2011).

One of the best studied examples are object-motion-sensitive
ganglion cells, first observed in salamander and rabbit retina
(Ölveczky et al., 2003). These cells respond strongly to local motion
signals over their receptive fields, such as a jittering texture patch,
but are strongly suppressed when the motion signal is global, that
is when the receptive field periphery experiences the same motion
trajectory as the center. Further studies of the adaptation charac-
teristics of these cells (Ölveczky et al., 2007) and of the responses
of other cell types in the relevant neural circuit (Baccus et al.,
2008) have provided a thorough understanding about the neural
circuit that underlies this complex feature extraction. First, in re-
sponse to motion over their receptive field centers, these cells re-
ceive sparse, temporally precise excitatory events, owing to the
fact that the presynaptic bipolar cells strongly threshold the trans-
mitted signals. These events are locked to the trajectory of the mo-
tion signal in the receptive field center. Second, wide-field
amacrine cells in the receptive field periphery detect motion
through a presynaptic circuit equivalent to the one in the receptive
field center of the ganglion cell. Thereby, these amacrine cells pro-
vide precisely timed inhibitory signals to the ganglion cell, which
are locked to the motion trajectory in the periphery and which
therefore cancel the excitatory signals if the trajectories in the cen-
ter and in the periphery coincide. The nonlinear thresholding
inherent to the bipolar cell signals is essential for this function.
First, it makes the ganglion cell sensitive to motion signals while
providing invariance to the detailed spatial pattern that moves.
Second, the high threshold selects strong signals to provide a
sparse representation of the motion trajectory, allowing a robust
distinction between whether these signals coincide in the center
and in the periphery or not.

A type of ganglion cell with similar function and circuitry has
recently been discovered in mouse retina. These so-called W3 gan-
glion cells are sensitive to small moving objects in front of a still
background (Zhang et al., 2012). Excitatory input is provided by
both On-type and Off-type bipolar cells in the receptive field, each
after undergoing a half-wave rectifying nonlinear transformation.
This convergence of On-type and Off-type signals makes the cells
sensitive to any change in the receptive field. Similar to the ob-
ject-motion-sensitive cells discussed above, this excitation is op-
posed by an inhibitory circuit that detects signals in the
periphery in a way analogous to the operation of the center circuit.
Thus, any peripheral or global signals will suppress the ganglion
cell; only a small, locally restricted visual input leads to activation
– and may trigger an escape reaction to a potential approaching
threat (Zhang et al., 2012). Again, the nonlinearities associated
with the pooling of signals over space represent a critical feature;
they let the cells become sensitive to small stimuli of the size of
bipolar cell receptive fields while avoiding cancelation by negative
activation at other locations.

On-type and Off-type bipolar cell signals also converge in the
receptive field center of another type of ganglion cell, found in
the salamander retina (Gollisch and Meister, 2008b). Again, these
excitatory signals undergo half-wave rectification so that any local
change of the visual signal within the receptive field center can
contribute to driving the ganglion cell. A crucial feature of these
cells, however, is a relative delay of the On-type inputs by about
30–40 ms compared to the Off-type signals. This provides the cells’
spiking responses with a characteristic temporal structure; the la-
tency of the first spike after the occurrence of a new visual scene
encodes the relative contributions of darkening and brightening
within the receptive field and thus provides a rapid information
channel about spatial structure in the scene.

Functionally similar to the W3 cell discussed above, but based
on a different circuit, an Off-type ganglion cell found in mouse ret-
ina has been associated with the detection of approaching objects,
representing potential threats. These cells respond strongly to an
increase in size of a dark object, even when combined with an
overall brightening of the scene, whereas laterally moving or
receding objects do not activate these cells (Münch et al., 2009).
Again, a nonlinear circuit has been proposed to underlie this spe-
cific motion detection. Both local excitation and local inhibition
are transmitted nonlinearly to these Off-type ganglion cells.
According to this model, activation by slow changes in light level
is suppressed by the nonlinear transmission and thereby hardly
influences the cell’s activity. Advancing Off-type edges, as occur
for an expanding dark object, on the other hand, provide strong
excitation. This excitation drives the cell’s spiking activity, unless
opposed by inhibition that is triggered by advancing On-type
edges, which occur behind a dark object during translational
movement, but which are absent during mere expansion of the
object.

The examples discussed so far all use some version of half-wave
rectification at the synapse between bipolar cells and their post-
synaptic partners to explain their functional characteristics. Re-
cently, however, it has been shown that different types of
nonlinear spatial integration can be observed in different ganglion
cells in the salamander retina and can be associated with different
functional roles (Bölinger and Gollisch, 2012). The majority of mea-
sured ganglion cells in this study indicated that inputs from bipolar
cells were transformed by a threshold-quadratic nonlinearity. For
the remaining third of cells, inhibitory signals from amacrine cells
added further nonlinear integration characteristics, which oc-
curred in a dynamic way during the response to a new stimulus.
These inhibitory signals act as a local gain control, leading to a
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particular sensitivity of these cells to spatially homogeneous stim-
uli. Functionally, the former type of spatial integration leads to
good detection of small, high-contrast objects, whereas the latter
type favors detection of larger objects, even at low contrast (Bölin-
ger and Gollisch, 2012). The distinction of these different types of
spatial stimulus integration was possible by a new experimental
approach, based on identifying iso-response stimuli in closed-loop
experiments. This technique can provide new insights into stimu-
lus integration by aiming at a quantitative assessment of the non-
linearities involved and will thus be further discussed in the
following.
7. Iso-response measurements: A new tool for studying
stimulus integration

Computational models that are based on nonlinear stimulus
integration have been successfully used to account for the response
characteristics of the various functional ganglion cell types dis-
cussed above. However, the particular form of the nonlinearity of-
ten remained an assumption of the model, typically in the form of
half-wave rectification, which sets negative signals to zero and
transmits positive signals in a linear fashion. Yet, the importance
of these nonlinear structures for retinal function raises the ques-
tion how to test their characteristics more directly.

In some cases, it has been possible to parameterize the nonlin-
earity of the bipolar cell signals and optimize the shape so that
ganglion cell responses best be captured (Victor and Shapley,
1979; Victor, 1988; Baccus et al., 2008; Gollisch and Meister,
2008a). This has corroborated the thresholding effect of the nonlin-
earity and, at least for some cells, suggested that, beyond the
threshold, the nonlinearity may rather be expansive, such as qua-
dratic or exponential (Gollisch and Meister, 2008a).

Recently, a different approach has been used to more directly
measure the nonlinearities associated with spatial integration in
the retina (Bölinger and Gollisch, 2012). The challenge for these
measurements lies in disentangling the different stages of nonlin-
earities, namely those that are involved with spatial integration
from those that subsequently transform the ganglion cell response,
for example, by enforcing a spiking threshold. A solution to this
problem has been suggested in the form of iso-response measure-
ments, which aim at identifying different stimulus combinations
that lead to the same, predefined neural response (Gollisch et al.,
2002; Gollisch and Herz, 2005). The idea behind this approach is
that these stimulus combinations are all affected in the same
way by the ganglion cell’s intrinsic nonlinearity. Thus, nonlineari-
ties involved in integrating these stimulus components are re-
vealed by analyzing which combinations of stimulus components
reach the predefined response. To search for such stimulus combi-
nations in electrophysiological experiments, closed-loop experi-
ments provide the necessary efficiency by using measured
responses to determine future stimulus patterns (Benda et al.,
2007).

How this approach works is best illustrated best by model
examples. Fig. 4 shows two models with two inputs each. The in-
puts are either linearly integrated (Fig. 4A) or summed after trans-
formation by a threshold-quadratic function (Fig. 4B). In a final
step, a sigmoidal output nonlinearity is applied, which mimics
thresholding and saturation in spike generation. While the overall
response surfaces are dominated by the sigmoidal shape of the
output nonlinearity, it is the contour lines, displayed underneath
the surface plots, that distinguish the models and give a clear sig-
nature of the linear and of the threshold-quadratic integration,
respectively (Bölinger and Gollisch, 2012).

This can be applied to the question of spatial integration in ret-
inal ganglion cells by finding a cell’s receptive field, subdividing it
into distinct stimulus components, and searching for such combi-
nations that give the same response, for example a certain spike
count or first-spike latency when the stimulus combination is
briefly flashed. Fig. 4 shows such iso-response measurements for
two sample ganglion cells from salamander retina. The first
(Fig. 4C) is representative of the majority of cells recorded in this
species; for both spike count and first-spike latency, the iso-re-
sponse stimuli lie on curves that resemble those of the thresh-
old-quadratic integration model of Fig. 4B, indicating the
presence of such a nonlinearity in the receptive fields of these cells.

However, for the second example (Fig. 4D), representative of
about a third of the recorded ganglion cells, the iso-response
curves for spike count and first-spike latency differed, and the for-
mer displayed a characteristic notch along the direction where
both stimulus components experienced the same negative con-
trast. This means that these cells feature a particular sensitivity
for homogeneous stimulation of their receptive fields, but only
when considering the spike count. Apparently, this characteristic
sensitivity is not yet present when the very first spike is generated
and rather develops over the course of the response in a dynamic
fashion. Further experiments showed that it relies on inhibitory
signaling in the retinal circuit (Bölinger and Gollisch, 2012). This
also explains why the first-spike latency is not affected, as the inhi-
bition needs an additional synaptic stage via an amacrine cell and
is thus delayed compared to direct excitation (Werblin and Dow-
ling, 1969; Roska et al., 2006; Cafaro and Rieke, 2010). Spatial stim-
ulus integration in these ganglion cells is thus a dynamic process,
which endows these cells with particular sensitivity to detect large
objects, even at low contrast, as already discussed above.

The finding of two different types of nonlinear spatial integra-
tion underscores the importance of quantitatively investigating
stimulus integration rather than only assessing whether or not
integration occurs in a linear fashion. The results also exemplify
the power of the iso-response method for this task, as it allows sep-
arating spatial integration from subsequent cell-intrinsic nonlin-
earities. In the same way, the iso-response method had
previously been used to elucidate spectral and temporal integra-
tion in insect auditory receptor cells (Gollisch et al., 2002; Gollisch
and Herz, 2005) and has recently also been applied to understand-
ing how neurons in primate visual cortex represent color informa-
tion (Horwitz and Hass, 2012). Application of the iso-response
method is most useful for directly testing the integration of few
stimulus components. In the above example, the stimulus con-
sisted of the contrast values in just two spatial regions; other
examples have applied iso-response measurements with three
stimulus components (Gollisch et al., 2002; Horwitz and Hass,
2012). Beyond three stimulus components, both the high-dimen-
sional search and the visual display of the results will become
increasingly tricky. The strength of the iso-response method
clearly rather lies in the fact that it can be applied with a limited,
selected set of stimulus components to obtain details of their
integration.

In the example of Fig. 4, the selected stimulus components were
relatively large parts of the receptive field center, thereby each
combining the contributions of several presynaptic bipolar cells.
The generality of the results can then be tested by measuring
iso-response curves with different layouts of the two spatial stim-
ulus components, for example, by using smaller parts of the recep-
tive field, down to the size of individual bipolar cell receptive
fields, or by spatially interleaving the components (Bölinger and
Gollisch, 2012). Together, these investigations can aid the develop-
ment of a full spatial integration model of how a retinal ganglion
cell pools over tens or hundreds of parallel input channels. For
example, the spatial scale at which nonlinear phenomena occur –
given, for example, by the spatial separation of two small stimulus
components or by the size of spatially interleaved components –
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Fig. 4. Illustration of the iso-response method for assessing spatial nonlinearities in retinal ganglion cells. (A) Responses of a simple model that takes two inputs s1 and s2,
combines them linearly by a ganglion cell G, and finally applies a sigmoidal output nonlinearity. The response surface, which displays the model response for different
combinations of inputs s1 and s2, is dominated by the sigmoidal structure of the output nonlinearity. The iso-response curves shown underneath, however, are straight lines,
thus providing a signature of the linear stimulus integration in this model. (B) Same as (A), but for a model with a threshold-quadratic nonlinear transformation of the inputs
before pooling by the ganglion cell G. Again, the response surface is dominated by the sigmoidal output nonlinearity, but the iso-response curves shown underneath provide a
signature of the threshold-quadratic nonlinearity that affects stimulus integration. (C) Sample iso-response curves for a salamander retinal ganglion cell, measured for both
spike count (blue) and first-spike latency (red). The inset shows the stimulus layout; the approximately circular receptive field center was divided into two halves, which
were stimulated with contrast values s1 and s2, respectively. These stimuli were flashed for 500 ms with different combinations of s1 and s2. Both curves are similar to the iso-
response curves shown in (B) and thus indicate a threshold-quadratic signal transformation. (D) Same as (C), but for a different salamander retinal ganglion cell with a distinct
shape of the iso-rate curve. This curve shows a characteristic notch along the lower-left diagonal, indicating that spatial integration is modified in such a way that the
receptive field becomes particularly sensitive to homogeneous stimulation. Reprinted from (Bölinger and Gollisch, 2012), Copyright (2012), with permission from Elsevier.
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can be used to distinguish between contributions from photore-
ceptors and bipolar cells (Bölinger and Gollisch, 2012). Yet, identi-
fying actual individual channels, such as the locations and
receptive fields of individual presynaptic bipolar cells, will have
to rely on other methods, such as anatomical assessments
(Schwartz et al., 2012) or spike-triggered-covariance (STC) analysis
as discussed above.

STC analysis is designed for identifying stimulus components
that undergo nonlinear integration. To further analyze how the
identified stimulus features are integrated, one can calculate iso-
response curves within subspaces spanned by two or three rele-
vant stimulus features (Rust et al., 2005). Again, the iso-response
approach here allows separating nonlinearities of stimulus integra-
tion from the output nonlinearity. Note, though, that this a posteri-
ori calculation of iso-response curves may be less efficient than in
the closed-loop approach. Furthermore, STC analysis may yield a
large number of relevant stimulus features, and all features that
are not directly considered in a particular subspace analysis effec-
tively act as noise sources. In such cases, it may help to make use of
the complementary nature of these two approaches by first identi-
fying relevant stimulus components through STC analysis and sub-
sequently studying their integration characteristics through
designated iso-response measurements.
8. Discussion and future challenges

The anatomical diversity of retinal ganglion cells presents an
important challenge for understanding visual processing and the
function of the retinal network. This has been particularly puzzling
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in light of the uniform description of ganglion cells in terms of their
center-surround receptive field structure. As seen above, several
recent studies have now provided new insight into this conundrum
by showing that different types of ganglion cells obtain different
functional attributes by how they integrate visual information over
their receptive fields, both center and surround. At the heart of these
processing schemes lie nonlinear signal transformations that shape
incoming signals before pooling by the ganglion cell. Distinguishing
between linear and nonlinear spatial integration has long been
recognized as an important feature for characterizing cell types,
but only recently has nonlinear spatial integration emerged as a
critical factor for providing different ganglion cell types with their
functional characteristics. This suggests that in the quest for a
functional separation of different ganglion cells that matches the
anatomical diversity, the quantitative features of the nonlinearities
involved in spatial integration might be an important factor.

Thus, new methods are needed to assess what kinds of nonlin-
ear operations are at work. One approach has been to use param-
eterized models of ganglion cell stimulus–response functions and
find the nonlinear transformation from the set of parameters that
maximizes how the model output fits to measured responses (Vic-
tor and Shapley, 1979; Victor, 1988; Baccus et al., 2008; Gollisch
and Meister, 2008a). This approach works well when a good under-
standing of the basic model structure already exists and when suf-
ficient data can be obtained to extract the potentially large number
of parameters in the model. Yet, this approach can naturally only
capture such nonlinear operations within the scope of the param-
eterization, and complex models with many parameters may be
difficult to handle computationally and prohibit reliable extraction
of the optimal parameter sets. Thus, limitations in data availability
and computational tools may restrict the nonlinear transforma-
tions to those that can be described with only one or few parame-
ters, such as a threshold and an exponent.

As discussed above, iso-response measurements represent an
alternative, as they provide a way to assess nonlinear stimulus
integration without the need of an a priori parameterization of
the nonlinearities (Bölinger and Gollisch, 2012). The strength of
the method lies in the fact that the measured iso-response curves
provide a characteristic signature of the type of stimulus integra-
tion and that this signature is independent of nonlinear transfor-
mations at the output stage of the system. Note, though, that the
functional forms of the nonlinear transformations are not provided
directly, but are inferred from analyzing the shape of the iso-re-
sponse curves, for example by comparing or fitting to computa-
tional model predictions. Furthermore, in order to apply the
technique efficiently, automated online analysis and closed-loop
experimental designs have to be set up, which may make the
method more demanding than, for example, reverse correlation
analyses with white-noise stimulation.

Based on the iso-response method, it has been possible to dis-
tinguish between two fundamentally different types of nonlinear
spatial integration (Bölinger and Gollisch, 2012), thus showing that
the complexity of nonlinear transformations within the receptive
field goes beyond the often assumed threshold-linear half-wave
rectification. These findings furthermore suggest that not all non-
linearly integrating ganglion cells should be classified under the
single label of Y cells; instead, there may be important functional
divisions between nonlinear ganglion cells, potentially correspond-
ing to different types of ganglion cells as determined by anatomy
or molecular markers. A quantitative assessment of spatial nonlin-
earities could thus help provide a better physiological signature of
different ganglion cell types and thereby facilitate classification
schemes (Carcieri et al., 2003; Segev et al., 2006; Zeck and Masland,
2007; Farrow and Masland, 2011; Marre et al., 2012), in particular
for extracellular recordings where the morphologies of the re-
corded neurons are not available.
Similarly relevant as the question how ganglion cells integrate
visual signals over their receptive field centers is the question
how they pool signals in their receptive field surrounds and how
center signals and surround signals are combined. Evidence for
nonlinear interactions between center and surround comes from
the finding that the surround appears to act in a divisive fashion
rather than in a linear, subtractive way (Merwine et al., 1995). Fur-
thermore, it was observed that the effect of surround inhibition
strongly differs for On-type and Off-type responses of On–Off gan-
glion cells in the frog retina, pointing towards further intricate
receptive field structure (Barlow, 1953). As discussed above, stim-
ulus integration in the surround is an important component for
specific ganglion cell types, in particular object-motion-sensitive
cells and W3 cells. More generally, it may be interesting to see
whether stimulus integration in the surround allows similar classi-
fications as for the linear or nonlinear integration over the recep-
tive field center.

The models that have been used to describe nonlinear spatial
integration in center and surround have been inspired by retinal
anatomy, typically using bipolar cells as subunits, assumed to cov-
er the receptive field of the ganglion cell in some regular fashion.
Two recent methodological advances ought to provide opportuni-
ties to bring this substrate for nonlinear integration in closer align-
ment with the actual circuitry. First, large-scale reconstructions at
the electron-microscope-level can provide circuit diagrams for
individual cells after they have been physiologically characterized
(Helmstaedter et al., 2008; Briggman et al., 2011; Denk et al.,
2012). This may help relate the spatial sub-structure of receptive
fields to actual circuit elements on a single-cell basis. Second,
physiological mappings of receptive fields at very high spatial res-
olution have shown that it is possible to identify the locations and
identities of individual cone photoreceptors that provided signals
for a measured ganglion cell (Field et al., 2010). It is conceivable
that this can lay the foundation for detailed assessments of nonlin-
ear transformations in the transmission from cones to ganglion
cells, for example, by measuring iso-response stimuli when acti-
vating pairs of individual cones.

The focus of this review has been on spatial integration. Yet, dif-
ferent nonlinear effects also occur in temporal integration by reti-
nal ganglion cells. This has been demonstrated, for example, by the
fact that STC analysis of retinal ganglion cell responses to temporal
flicker of light intensity with spatially homogeneous stimuli gener-
ally yields more than a single relevant stimulus feature (Fairhall
et al., 2006). As the relevant stimulus features are of a purely tem-
poral nature and are combined in a nonlinear fashion (otherwise
they would form a single feature), this indicates the presence of
temporal nonlinearities. For On–Off ganglion cells, one contribu-
tion to these temporal nonlinearities comes from the nonlinear
combination of On-type and Off-type inputs, which correspond
to different temporal filters (Fairhall et al., 2006; Geffen et al.,
2007; Gollisch and Meister, 2008a). More generally, temporal non-
linearities may likely arise from negative or positive feedback pro-
cesses, capturing refractoriness, gain control, and intrinsic spike
burst generation (Berry and Meister, 1998; Berry et al., 1999; Keat
et al., 2001; Pillow et al., 2005; Fairhall et al., 2006). An interesting
direction for future research will thus be to study how spatial and
temporal nonlinearities have to be combined to arrive at an accu-
rate model of spatio-temporal signal processing in retinal circuits.

Finally, a better understanding of spatial integration by retinal
ganglion cells appears to be a prerequisite for capturing their re-
sponses to natural stimuli. While there have been successful at-
tempts to model how ganglion cells respond to natural temporal
sequences of light intensity (van Hateren et al., 2002), natural spa-
tio-temporal stimuli appear to present a more fundamental chal-
lenge, most likely because the processing by spatial subfields,
regarding both nonlinear transformations and adaptive processes,
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is more relevant under natural stimulation than for white-noise
stimuli. Including such subfield structure and appropriate nonlin-
ear spatial stimulus integration should thus improve our under-
standing of how the retina operates in the real world. In the
long-run, these improved models of how ganglion cells integrate
visual stimuli over space and time should also help in the endeavor
to restore vision through prosthetic devices (Zrenner, 2002;
Busskamp et al., 2012) by incorporating the retinal operations
into the electrical or optical activation scheme of ganglion cells
(Nirenberg and Pandarinath, 2012).
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