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Abstract For understanding the computation and function
of single neurons in sensory systems, one needs to investi-
gate how sensory stimuli are related to a neuron’s response
and which biological mechanisms underlie this relationship.
Mathematical models of the stimulus–response relationship
have proved very useful in approaching these issues in a sys-
tematic, quantitative way. A starting point for many such
analyses has been provided by phenomenological “linear–
nonlinear” (LN) models, which comprise a linear filter fol-
lowed by a static nonlinear transformation. The linear filter
is often associated with the neuron’s receptive field. Howe-
ver, the structure of the receptive field is generally a result
of inputs from many presynaptic neurons, which may form
parallel signal processing pathways. In the retina, for example,
certain ganglion cells receive excitatory inputs from ON-type
as well as OFF-type bipolar cells. Recent experiments have
shown that the convergence of these pathways leads to intri-
guing response characteristics that cannot be captured by a
single linear filter. One approach to adjust the LN model to
the biological circuit structure is to use multiple parallel fil-
ters that capture ON and OFF bipolar inputs. Here, we review
these new developments in modeling neuronal responses in
the early visual system and provide details about one particu-
lar technique for obtaining the required sets of parallel filters
from experimental data.
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1 Introduction

Assessing the relationship between the sensory stimulus
and the neuronal responses and identifying the underlying
biological processes are central goals in the study of sen-
sory systems. One way of addressing these questions is by
construction of suited model descriptions that aim at
quantitatively mapping the stimulus–response relation while
simultaneously capturing the relevant neuronal dynamics
(Gerstner and Kistler 2002; Dayan and Abbott 2005; Herz
et al. 2006).

Here, we will review recent developments for modeling
the spiking activity of retinal ganglion cells in response to
visual stimulation. These models extend the widely used LN
model approach that aims at describing neural responses in
terms of a linear filter and a subsequent nonlinear transfor-
mation. Recent experiments in the retina have shown that
specific response features of certain types of neurons intima-
tely rely on the convergence of parallel processing pathways,
which are the result of synaptic inputs from both ON-type and
OFF-type bipolar cells. This convergence of parallel path-
ways with markedly different stimulus-processing characte-
ristics can be captured by models with several linear filters in
parallel. Extending the LN model in such a way brings about
new data-analytical challenges for obtaining the parameters
from experiments. We will begin by revisiting single- and
multi-filter LN models and different techniques for extrac-
ting their parameters from data. After reviewing applications
of the LN model to the retina and summarizing recent related
experimental findings, we will provide details about the fit-
ting procedure for one particular multi-pathway model that
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captures the effects of convergent ON and OFF pathways on
first-spike latencies.

2 The LN modeling approach

2.1 Single-filter models

Analyzing how sensory signals affect the spiking activity of a
neuron requires a good description of the neuronal
stimulus–response relationship. The linear–nonlinear (LN)
model has proven to provide a successful and convenient fra-
mework in many cases (Hunter and Korenberg 1986; Sakai
1992; Meister and Berry 1999; Carandini et al. 2005;
Schwartz et al. 2006). Its basic model structure, shown in
Fig. 1a, consists of a single linear filter “L” that converts
a stimulus s(x, t), which can depend on time t and spatial
coordinates x, into the filter output y(t). The following non-
linear transformation “N” of y(t) into the response r(t) is
instantaneous in time. Typically, r(t) is interpreted as the
neuron’s membrane potential or as the instantaneous firing
rate, i.e., the spike probability per unit time.

A primary advantage of the LN model is the fact that
obtaining the model parameters—the shape of the filter and
the nonlinear transformation—can easily be achieved by a
reverse correlation analysis with a stimulus that has a Gaus-
sian (or otherwise spherically symmetric) distribution of
intensity values (Chichilnisky 2001). In fact, the filter is then
simply obtained as the spike-triggered average, i.e., the ave-
rage of all stimulus segments that generated spikes. The non-
linearity can be subsequently determined, for example, by
creating a histogram of the measured neuronal response over
the computed filter output y(t). The ease of obtaining the
model parameters from experimental data and their straight-
forward interpretation have made the LN model uniquely
popular for modeling stimulus–response relationships of
neurons in many sensory systems.

It is important to keep in mind, though, that the mode-
ling of neuronal responses in terms of filters and transfor-
mations has an intrinsic phenomenological nature, aimed
primarily at providing an accurate description of the signal-
processing characteristics and less at capturing the individual
biophysical processes that underlie the input–output relation.
Nonetheless, this approach can be combined with biophysi-
cally inspired components, such as spike generation dyna-
mics (Keat et al. 2001; Paninski et al. 2004; Pillow et al.
2005; Gollisch 2006) or gain control (Shapley and Victor
1978; Victor 1987; Berry et al. 1999). Explicitly incorpora-
ting parallel processing pathways for ON and OFF signals,
as will be discussed below, represents a similar biologically
inspired extension. Before diving into this topic, we review
generic phenomenological approaches to multi-filter models.

2.2 Multi-filter models

Reducing a neuron’s receptive field to a single linear filter has
proven too restrictive in many examples. A straightforward
remedy is to replace the linear filter in the first model stage by
a set of parallel linear filters. Correspondingly, the subsequent
nonlinearity becomes a nonlinear function that takes as input
all the filter outputs from the first stage and produces a single
variable as the output (Fig. 1b). Similar to the single-filter LN
model, this multi-filter model draws part of its appeal from
the existence of simple and elegant techniques for parameter
estimation from experiments. Statistical analysis techniques,
such as the “neuronal modes” approach (Marmarelis 1989;
Marmarelis and Orme 1993; French and Marmarelis 1995)
and, in particular, spike-triggered covariance as a straightfor-
ward extension of the spike-triggered average (de Ruyter van
Steveninck and Bialek 1988; Touryan et al. 2002; Schwartz
et al. 2006) have proved expedient for promoting the appli-
cability of these models in various scenarios.

In short, the spike-triggered covariance analysis is based
on comparing the stimulus variance of the complete
stimulus set of Gaussian white noise to the variance of the
stimulus subset that elicited spikes (“spike-triggered stimu-
lus ensemble”). Typically, the stimulus variance differs bet-
ween these two ensembles along such stimulus dimensions to
which the neuron is sensitive. In other words, the filters of the
multi-filter LN model define the only special dimensions of
the stimulus space; for all other, orthogonal stimulus dimen-
sions, the original symmetry of the stimulus distribution is
preserved, and the stimulus variance stays constant. The sti-
mulus dimensions that do experience a change in variance
can be determined from a principal component analysis of
the spike-triggered stimulus ensemble. An example for this
is given in the presentation of a specific data fitting technique
below.

These relevant stimulus features can be selected as the
filters of the multi-filter LN model. Once the filters are obtai-
ned from the spike-triggered covariance analysis, one may
aim at assessing the nonlinearity from the data by measuring
how the instantaneous firing rate (or the spike probability)
depends on the momentary outputs of the filters. Depending
on the amount of available data, however, this is feasible
only for a small number of filters. A more detailed account
of the spike-triggered covariance methodology can be found
in Schwartz et al. [2006].

2.3 Alternatives to spike-triggered analyses

There have been a number of recent developments regar-
ding alternatives to the spike-triggered analysis techniques
for obtaining LN models and variants thereof. In particu-
lar, information theory provides a framework for extracting
filters that capture maximal information about the neural
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Fig. 1 LN model and reverse correlation. a Structure of the LN
model. In the first step, the stimulus s(x, t) is convolved with a linear
filter to produce the filter output y(t). In the second step, this is nonli-
nearly transformed into the response r(t). b Structure of the multi-filter
LN model. The stimulus s(x, t) is convolved with multiple linear fil-
ters in parallel, each resulting in a separate filter output yn(t). The
nonlinear transformation is now multi-dimensional; it takes all fil-
ter outputs as input and yields the response r(t). c Reverse correla-
tion with a spatially homogeneous flicker stimulus. Light intensities
of the stimulus are distributed according to a Gaussian distribution.
For all measured spikes, the preceding stimulus segments are collec-

ted. The average of all these segments, the spike-triggered average,
yields an estimate of the linear filter for the first stage of a single-
filter LN model. d Reverse correlation with a stimulus composed of
flickering stripes. Light intensities are again drawn from a Gaussian
distribution. The stimulus segments that precede a spike have one tem-
poral and one spatial dimension. The spike-triggered average can be
plotted as a two-dimensional color plot, with blue denoting low light
intensity (below mean level) and red denoting high light intensity (above
mean level). It can again be interpreted as the filter of a single-filter
LN model

response (Paninski 2003; Sharpee et al. 2004). Information
theory can furthermore be used to combine spike-triggered
average and spike-triggered covariance analyses into a single
conjoint analysis (Pillow and Simoncelli 2006).

Another set of successful techniques is based on
maximum-likelihood approaches (Paninski et al. 2004). This
method has also proved quite useful for incorporating addi-
tional processing modules, such as neuronal refractoriness

and after-spike currents (Paninski et al. 2004; Pillow et al.
2005). One advantage of these alternative spike-triggered
methods is that they can be readily applied to more complex
stimulus conditions, such as natural stimuli. These typically
contain higher order correlations that distort the filters obtai-
ned from spike-triggered analyses, which necessitates signi-
ficant correction procedures (Theunissen et al. 2001; Felsen
et al. 2005; Touryan et al. 2005).
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3 LN models of retinal ganglion cell responses

3.1 Single-filter models

The neural network of the retina has a long tradition as a sys-
tem of investigation that combines excellent experimental
accessibility and computational rigor in the applied models
(Spekreijse 1969; Marmarelis and Naka 1972; Levick et al.
1983; Victor 1987; Sakai 1992; Meister and Berry 1999; Keat
et al. 2001; van Hateren et al. 2002; Pillow et al. 2005). One of
its principal advantages for studying neuronal network func-
tion is the fact that its inputs and outputs are under very good
experimental control. The retina can be optically stimulated
by projecting images onto its photoreceptor layer. The out-
put of the retina are the spike trains of ganglion cells, whose
axons form the optic nerve and transmit all visual information
that is accessible to the rest of the brain. These output spike
trains can be efficiently and reliably recorded from isolated
pieces of retina placed on multi-electrode arrays (Meister
et al. 1994; Segev et al. 2004).

LN models and spike-triggered analyses have long been
established as standard tools for analyzing responses of reti-
nal ganglion cells. Examples for spike-triggered averages
of two ganglion cells are shown in Fig. 1c and d, for a
purely temporal stimulus as well as a spatiotemporal sti-
mulus with one spatial dimension, respectively. In the first
case, the stimulus is a spatially homogeneous flicker; in the
second case, it consists of flickering stripes. All light intensity
values, for the full-field illumination as well as for individual
stripes, were drawn independently from a Gaussian distribu-
tion around some intermediate gray illumination level.

The filters obtained from this spike-triggered average
analysis can be used to characterize the response types of
the neurons. For both cells shown here, the filters display a
negative part close to time zero; on average, the light inten-
sity decreased shortly before the spike occurred. This fact is
generally used to classify the cells as OFF-type (Segev et al.
2006). But both cells also show pronounced ON characteris-
tics preceding the OFF part of the filters, giving the filters a
strongly biphasic (or triphasic) shape. In fact, the two cells,
like many similar ones, respond with bursts of spikes to both
step increases and decreases in light intensity, which gives
them a signature of ON–OFF cells (Burkhardt et al. 1998).
ON and OFF responses in the retina are mediated by activa-
tion of ON and OFF bipolar cells that respond to light inten-
sity increases and decreases, respectively. ON–OFF ganglion
cells appear to receive inputs through both these pathways
(Werblin and Dowling 1969; de Monasterio 1978; Burkhardt
et al. 1998; Greschner et al. 2006).

It has recently been shown that the characterization
of ON-type and OFF-type filters is not completely static.
This became apparent by the following experiment (Geffen
et al. 2007): ganglion cells of the salamander retina were

stimulated by flickering light in their receptive field center.
Under stationary stimulus conditions, the reverse correlation
revealed typical OFF-type filters for many neurons. For some
of these, the filter characteristics changed, however, when a
sudden shift of a visual pattern occurred in the periphery—
similar to the global image shifts that accompany sacca-
dic eye movements. In the ensuing about 100 ms after this
shift, some of these ganglion cells yielded filters typical for
ON-type cells; this means that, temporarily, the filter shapes
were nearly inverted as compared to stationary conditions. As
we will see below, these intriguing findings can be explained
by specific filter models that capture contributions from the
ON and OFF pathways in separate filters.

3.2 Multi-filter models

The dynamic changes between ON and OFF characteristics
of ganglion cells motivated a model with explicit input from
ON and OFF bipolar cells. Experimental support that this cir-
cuit structure is relevant for the observed phenomena came
from pharmacological tests. To investigate the involvement
of ON bipolar cells, the drug 2-amino-4-phosphono-butyrate
(APB) can be applied to the retina. APB is known to block
the synaptic input from photoreceptors to ON bipolar cells
(Slaughter and Miller 1981; Yang 2004). Indeed, the effect
of the drug was to abolish the occurrence of the ON charac-
teristics after the peripheral shift (Geffen et al. 2007).

The modeling efforts thus aim at explaining the obser-
ved changes in response characteristics after a saccade while
taking into account the experimental findings about the cellu-
lar pathways involved. The approach is to capture the effects
of inputs from both ON and OFF bipolar cells to the ganglion
cell by separate filters, one with typical OFF-type characte-
ristics, the other a typical ON-type filter (Fig. 2). The two
filter outputs are sent through separate rectifying nonlinea-
rities, which are thought to arise at the bipolar-to-ganglion
cell synapse. Finally, the two pathways are summed to yield
the ganglion cell’s firing rate. The power of this two-pathway
model lies in the fact that it can easily capture the differences
in signal processing between the steady-state and the time
right after a saccade. It turns out that only the strengths of
the two pathways need to be adjusted; no changes in the
shapes of the filters are required. Furthermore, there is good
evidence for the biological mechanism of this change in the
weighting of the two pathways. This effect is mediated by a
wide-field amacrine cell, which is activated by the peripheral
shift and sends inhibitory signals to the circuit of the receptive
field center (Geffen et al. 2007).

Separate inputs from ON and OFF pathways into specific
ganglion cells have also been suggested by a generic inves-
tigation of multi-filter LN models under spatially homoge-
neous flicker stimulation (Fairhall et al. 2006). In this study,
the modeling goal was not to match a specific circuitry, but
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Fig. 2 Diagram of a ganglion
cell model with separate ON and
OFF pathways. The stimulus is
filtered by an ON-type and an
OFF-type filter, and each filter
output is separately rectified by a
nonlinearity. Summation finally
leads to the model prediction of
the firing rate response. Figure
adapted from Geffen et al.
[2007] under the Creative
Commons Attribution License

to find good quantitative descriptions of the ganglion cell
responses and to classify the cells according to the number
and shapes of filters obtained. The approach was to apply a
spike-triggered covariance analysis, and the resulting models
capture the ganglion cell responses remarkably well; using
tools from information theory, this study found that the
models generally account for more than 80% of the
information that is transmitted by the instantaneous firing
rate.

Of course, the spike-triggered analysis does not automa-
tically lead to an understanding of which features of the
neuronal circuitry correspond to the obtained filters and non-
linearities in the model. In some cases, however, certain fea-
tures of the resulting model structure can be explained in
terms of the biological substrate. For some ganglion cells, for
example, the obtained two-filter LN model can be understood
as resulting from threshold-based spike generation mecha-
nisms (Fairhall et al. 2006). In other cases—and more impor-
tantly for our present purpose—the two filters arise from
a confluence of ON and OFF inputs (Fairhall et al. 2006;
Geffen et al. 2007).

4 Spike timing at stimulus onsets

Most modeling approaches that we have discussed so far aim
at capturing the (time-dependent) firing rate of a neuron under
continuous, stationary stimulus conditions. Another funda-
mental stimulus paradigm is given by the sudden appearance
of a visual image. In natural vision, such sudden stimulus
onsets are caused by saccades, i.e. rapid shifts of the direc-
tion of gaze (Land 1999). The prominent temporal structure
that saccades enforce on the natural stream of visual signals
falling onto the eye makes the study of neuronal responses
to stimulus onsets of obvious relevance.

Even for the simplest stimulus onsets—step increases and
decreases of the light intensity with no spatial structure—
one finds intriguing phenomena in the timing of spike events
elicited in ON–OFF ganglion cells. In the turtle retina, spe-
cific ON–OFF ganglion cells have been shown to display

peculiar spike patterns to steps in light intensity (Greschner
et al. 2006; Thiel et al. 2006). Whereas the first spike after the
change in light intensity was monotonically shifted to earlier
times with increasing size of the intensity step, the timing
of a second spike event had a non-monotonic dependence
on step size, with the shortest timing occurring for interme-
diate changes in light intensity. To explain these response
characteristics, models were employed that combine paral-
lel ON and OFF pathways with feedback components and
gain control. Both in the form of a phenomenological cas-
cade model (Greschner et al. 2006) as well as in the form of
a biophysical model of the retina network (Thiel et al. 2006),
this allowed an accurate reproduction of the encountered res-
ponse phenomena.

When the stimuli are enriched with a spatial structure, the
potential of spike timing effects for transmitting detailed spa-
tial information about the newly encountered image becomes
apparent (Gollisch and Meister 2008). This was studied by
measuring the first-spike latencies of ganglion cells in the
salamander retina in response to flashed images. As shown
in Fig. 3a, ganglion cells typically responded with a preci-
sely timed burst of spikes. To assess the cells’ responses, the
number of spikes in the burst (“spike count”) as well as the
time from stimulus onset to the first spike (“latency”) were
measured when a grating was presented with different spa-
tial phases, so that the boundaries between the dark and light
regions of the grating lay at different locations.

Most interestingly for the present discussion, many cells
reliably responded with a burst of spikes to all spatial phases
of the grating. This included responses to stimuli that were
completely reversed in polarity so that bright and dark regions
of the image were exchanged. Moreover, the latency of the
response shifted systematically with the spatial phase of
the grating. Early responses were observed when dark bars
of the grating fell onto the neuron’s spatial receptive field;
bright bars caused late responses. This relation between spa-
tial phase of the stimulus and response latency can be sum-
marized in a tuning curve (Fig. 3b) and compared to the
corresponding tuning in spike count. For most recorded
neurons, the latency was much more strongly tuned and
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Fig. 3 Latency coding by retinal ganglion cells. a Visual stimulus
and schematic response. The applied visual stimulus consists of gray
illumination of intermediate intensity for 750 ms, followed by a spatial
square-wave grating for 150 ms. The spatial period of the grating was
about 660 µm on the retina. Retinal ganglion cells typically respond to
the onset of the grating with a short burst of spikes. The response latency
is the time between stimulus onset and the first spike; the spike count

is the total number of spikes elicited by the stimulus (counted over the
window of 0–220 ms after stimulus onset). b Tuning curves for spike
count and latency for a sample ganglion cell (same as in Fig. 1d). For
this cell, both spike count and latency varied systematically with the
spatial phase of the grating. The error bars denote standard deviations,
measured over many repeats of the same stimulus

consequently contained more information about the spatial
phase of the stimulus. Moreover, this information is avai-
lable already with the first spike, thus providing a potential
signal for very rapid visual processing (Potter and Levy 1969;
Thorpe et al. 2001; Kirchner and Thorpe 2006).

Again, the responses are intimately connected to the
convergence of ON and OFF inputs; when APB was used to
block ON inputs, the observed response phenomena disap-
peared, and the neurons behaved like pure OFF-type cells
(Gollisch and Meister 2008). In the following, we will first
discuss a model structure that captures these latency-tuning
effects and subsequently elaborate on how the model para-
meters are obtained from electrophysiological data.

5 Modeling first-spike latencies for ON–OFF
ganglion cells

The following model approach is aimed at capturing speci-
fically the first spike latency after the onset of a flashed sti-
mulus. The potential for rapid information transmission by
latencies warrants special efforts to model this response fea-
ture. As pharmacological experiments indicated the necessity
of signals from ON and OFF bipolar cells, a key aspect of the
modeling will be the use of parallel ON and OFF pathways
that correspond to separate stimulus filters.

However, before plunging into modeling separate ON and
OFF pathways, let us consider for comparison a model
without this separation. This is essentially a single-filter LN
model, but adjusted for modeling first-spike latencies, as

shown in Fig. 4a: The stimulus s(x, t) is homogeneous gray
illumination followed by a square-wave grating over the spa-
tial coordinate x . The relevant linear filter here is the
spatiotemporal receptive field of the neuron, obtained as the
spike-triggered average (Fig. 1d). A single spatial dimension
of the filter suffices because the grating stimulus s(x, t) varies
in light intensity only along one direction.

The first step of the model is to convolve the stimulus with
this spatiotemporal filter f (x, τ ) to obtain the filter output
y(t) :

y(t) =
∫

dx

0∫

−∞
dτ s(x, t + τ) · f (x, τ ).

We here use a notation with continuous time and space; in
practical applications, both are often naturally discretized by
using stimuli with a fixed temporal frame rate and a pixelated
spatial stimulus. The integrals are then converted into sums
over frames and pixels.

Next, the linear response signal y(t) is half-wave rectified
to yield the activation signal a(t) :
a(t) = N (y (t)) ,

where

N (y) =
{

y for y > 0
0 for y ≤ 0

is a half-wave rectifying nonlinearity.
Finally, a threshold criterion is used to convert this acti-

vation into the occurrence of a spike. The spike time tspike is

123



Biol Cybern (2008) 99:263–278 269

Fig. 4 Modeling the response latencies of ON–OFF ganglion cells.
a Single-filter model. The stimulus is a spatial square-wave grating
that appears for 150 ms. To obtain the activation of the ganglion cell,
this stimulus is convolved with a single spatiotemporal filter, which
corresponds to the cell’s receptive field. After applying a half-wave
rectification, which removes negative excursions of the activation, a
threshold-criterion is applied to the activation curve. Upon first crossing
of the threshold, the model neuron fires its first spike, which determines
the latency. As the receptive field is measured in a separate experiment,
the threshold value is the only free parameter and is optimized by a least-
squares fit to the latency tuning curve. b Resulting model fit from the
single-filter model. The data are the same as in Fig. 3b. The model fails
to predict threshold crossings for four of the eight stimuli. c Extension

of the filter model to incorporate separate filters for the ON and OFF
pathway. The receptive field is split up into an ON field and an OFF field.
Each is taken as a spatiotemporal filter, and their outputs are rectified
and then summed. The first spike is again determined by a threshold cri-
terion. d Fit of the two-pathway model to the data. Spikes are predicted
for all eight stimuli, but the quantitative fit of the tuning curve is poor.
e Model with multiple spatially local ON and OFF filters. For both the
ON and OFF field, each stripe, corresponding to a distinct location on
the retina, is considered as a separate (temporal) filter. The filter outputs
are all individually rectified and then summed. f Fit of the multi-filter
model to the data, again after optimization of the threshold value. In
contrast to the other two model versions, the multi-filter model results
in an excellent fit of the latency data

thus given by the time when a(t) crosses a (positive) thre-
shold value θ :
a(tspike) = θ and a(t) < θ for t < tspike.

The threshold value θ must be positive, otherwise a(t) would
be above threshold already at stimulus onset. Here as well as
in the subsequently presented model versions, the value of
the threshold is the only free parameter of the model and is
optimized by a χ2 fit to the latency tuning curve. All filter
shapes are determined from independent measurements as
will be discussed in the next section. Note that the half-wave
rectification is included in this particular model simply for

analogy with the multi-filter model discussed below; it has
no effect on predicting the latency because negative values
of y(t) cannot cross threshold.

This model fails to explain the measured responses
(Fig. 4b). The primary reason is simply that the model
produces no spikes at all for several of the stimuli; if one
grating leads to a strong positive activation a(t), then the
inverted grating results in a negative a(t).

Let us therefore extend this model by including separate
filters for the ON and OFF pathways. As shown in Fig. 4c,
this is achieved by splitting up the receptive field f (x, τ )

into two separate filters: the ON field f (ON)(x, τ ) and the
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OFF field f (OFF)(x, τ ). These two fields are normalized so
that

f (ON)(x, τ ) + f (OFF)(x, τ ) = f (x, τ ).

The normalization ensures consistency with the measured
spike-triggered average and fixes the relative strengths of the
ON and OFF pathways.

For each field, we compute a filter output by convolution
with the visual stimulus:

y(ON)(t) =
∫

dx

0∫

−∞
dτ s(x, t + τ) · f (ON)(x, τ )

y(OFF)(t) =
∫

dx

0∫

−∞
dτ s(x, t + τ) · f (OFF)(x, τ ).

Before y(ON)(t) and y(OFF)(t) are combined into a single
activation function a(t), they are individually half-wave rec-
tified so that

a(t) = N
(

y(ON)(t)
)

+ N
(

y(OFF)(t)
)

.

The resulting activation a(t) is supplied with a threshold cri-
terion as before; the first spike is elicited when a(t) crosses
the threshold value θ.

As anticipated, this model now produces spikes for all
stimuli, but the tuning of the latency curve is not well repro-
duced quantitatively (Fig. 4d). From the perspective of the
neuronal circuitry, a flaw of this model version is that it takes
into account the partition of bipolar cells into ON and OFF
type, but not their smaller receptive field sizes as compared
to ganglion cells; both the ON and the OFF field are still
integrated linearly over space.

We therefore extend the model to include rectification
prior to the summation over space, (Fig. 4e). We partition the
spatial dimension x into subfields of �x ≈ 80 µm, which
corresponds about to the size of bipolar receptive fields (Hare
and Owen 1996; Baccus et al. 2008). For each subfield xn,

we consider a separate set of ON and OFF filters, f (ON)
n (τ )

and f (OFF)
n (τ ), so that we receive a collection of filter outputs

from both the ON and OFF pathway:

y(ON)
n (t) =

0∫

−∞
dτ s(n · �x, t + τ) · f (ON)

n (τ )

y(OFF)
n (t) =

0∫

−∞
dτ s(n · �x, t + τ) · f (OFF)

n (τ ).

Now, each output from y(ON)
n (t) or y(OFF)

n (t) is individually
half-wave rectified, and the activation function a(t) is thus
given by

a(t) =
∑

n

N
(

y(ON)
n (t)

)
+

∑
n

N
(

y(OFF)
n (t)

)
.

When the threshold value θ is again optimized according to a
χ2 fit, we obtain a remarkably good fit to the tuning curve of
the first spike latency (Fig. 4f). The primary challenge of this
model lies, however, in obtaining its principal parameters,
the shapes of the ON and OFF fields. We will now outline a
method for dealing with this challenge.

6 Obtaining the filters for an ON–OFF multi-pathway
model

6.1 ON and OFF filters for spatially homogeneous
stimulation

To obtain the ON and OFF filters, we need to separate the
receptive field into contributions from these two pathways.
To explain this procedure, we will first consider the case
of spatially homogeneous stimuli where only the temporal
stimulus dimension needs to be considered. Several studies
(Fairhall et al. 2006; Greschner et al. 2006; Geffen et al.
2007; Gollisch and Meister 2008) have pursued this separa-
tion with variants of the same basic technique, which we will
also follow here. It makes use of the fact that the ON and
OFF pathways are sensitive to stimuli that are nearly inver-
ted with respect to each other. It follows that typically one of
the pathways can be excited, not both simultaneously. This
allows a classification of the spikes according to the pathway
that was responsible for providing excitation.

As in the computation of the spike-triggered average
(Fig. 1c), the analysis is based on an experiment with fli-
ckering illumination and begins with collecting the stimu-
lus segments that led to spikes, the spike-triggered stimulus
ensemble. The light intensities are drawn from a Gaussian
distribution and, for simplicity, normalized to zero mean and
unit variance.

As explained above, a useful starting point for obtaining
multiple filters is the spike-triggered covariance analysis,
which computes the principal components of the spike-
triggered stimulus ensemble. For this analysis, it is often
easiest to think of the stimulus segments as points (or vectors)
in a high-dimensional space; 20-dimensional in the present
example because we consider the stimulus intensities over
the 20 frames prior to a spike. We can then calculate the
covariance matrix of the distribution of these data points as
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Fig. 5 Separation of contributions from ON and OFF pathways
with spatially homogeneous flicker stimuli. a Eigenvalue spectrum
obtained from a principal component analysis of the spike-triggered
stimulus ensemble. Many eigenvalues lie near unity, indicative of sti-
mulus structures that do not affect the occurrence of a spike. At the low
and high ends of the spectrum, however, deviations of the eigenvalues
from unity indicate relevant stimulus structures. b Principal components
corresponding to the highest (PC1) and lowest (PC2) eigenvalue. For
comparison, the spike-triggered average (STA) is shown by the dashed
line. c Instantaneous firing rate of the neuron, depending on the projec-
tion of the preceding stimulus segment onto the principal components
PC1 and PC2 and onto the spike-triggered average, respectively. d Scat-
ter plot of the projections of the spike-triggered stimulus segments onto
PC1 and PC2. e Instantaneous firing rate of the neuron depending on
the projections of the stimulus onto PC1 and PC2. As compared to the

scatter plot in d, this form of display takes into account that the presen-
ted stimuli lie more densely close to the center than in the periphery.
The two-dimensional bins are chosen along a polar coordinate system
so that in each radial direction, each bin contains the same number
of data points. Therefore, the area covered by the bins increases with
radial distance because the stimuli lie less dense in the periphery. For
display clarity, the last bin in each radial direction is not drawn to its
actual size—it would stretch out much further in the radial direction if it
were to cover the area of all contributing data points. f Spike-triggered
averages obtained separately for each cluster. The clusters are separa-
ted along the vertical zero-axis in d, and the spike-triggered stimulus
segments are averaged for each cluster. The two resulting waveforms
display shapes that are typical for ON and OFF filters, respectively.
Note that the OFF filter has faster kinetics; it peaks around 30 ms closer
to time zero than that the ON filter

C(n, m) =
∑

tspike

(
s(tspike − n · �t) − STA(−n · �t)

) · (
s(tspike − m · �t) − STA(−m · �t)

)
Nspikes − 1

,

where STA(t) is simply the spike-triggered average and �t
is the duration of the frame, here 15 ms. The principal com-
ponents are obtained as the eigenvectors of this matrix.

Figure 5a shows a spectrum of eigenvalues obtained from
such an analysis for the cell whose receptive field was shown
in Fig. 1c. As the light intensities were normalized to unit
variance, most eigenvalues cluster around unity. The cor-
responding eigenvectors denote directions in stimulus space
along which the variance did not change between the com-
plete stimulus ensemble and the spike-triggered stimulus
ensemble; they are therefore considered as non-relevant sti-
mulus directions. (Note that in other studies, one also finds
examples where the covariance matrix of the complete stimu-
lus ensemble was subtracted from the spike-triggered cova-
riance matrix before the eigenvalues are calculated. This
is equivalent to the present approach, but the non-relevant
eigenvalues will then cluster around zero).

The spectrum of eigenvalues could now be analyzed
statistically to find those components that significantly dif-
fer from unity, for example by computing the distribution of
eigenvalues for temporally shuffled spike trains (Rust et al.
2005; Schwartz et al. 2006). This allows a formal analysis
of how many filters should be included in the multi-filter LN
model. Here, however, we are only interested in finding those
(one or two) stimulus dimensions that let us best distinguish
between contributions from the ON and OFF pathways. The-
refore, we simply focus on the highest and lowest eigenvalue
of the spectrum, which furthermore allows us to easily auto-
mate the analysis.

Clearly, the largest eigenvalue sticks out from the rest.
This is typical for the analyzed neurons with ON–OFF res-
ponse characteristics. The large eigenvalue corresponds to
the fact that two nearly opposing pathways contribute to the
response, which makes the variance of the spike-triggered
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stimulus ensemble along this direction particularly large.
Thus, if no such eigenvalue emerges from the analysis, it
is unlikely that both ON and OFF pathways contribute stron-
gly. The lowest eigenvalue also deviates substantially from
unity and is thus a candidate for denoting a relevant stimulus
structure. Because its value is smaller than unity, the spike-
triggered stimulus ensemble is compressed along this stimu-
lus component. In specific contexts, this has been associated
with suppressive response pathways (Schwartz et al. 2002),
but it can arise from various sources, such as the dynamics
of spike generation (Fairhall et al. 2006).

The principal components PC1 and PC2, corresponding
to these maximal and minimal eigenvalues, respectively, are
shown in Fig. 5b. To assess the effect of these stimulus com-
ponents on the neuron’s response, we can compute the ins-
tantaneous firing rate depending on the projection P(t) of a
stimulus segment onto the principal component with a sti-
mulus segment. This projection measures how strongly the
component is represented in the stimulus, and it is compu-
ted for each stimulus segment {s(t − N · �t), . . . , s(t)} as
the dot-product with the principal components PC1(t) and
PC2(t), for example:

P1(t) =
0∑

n=−N

PC1(n · �t) · s(t + n · �t).

The instantaneous firing rate is obtained as the spiking pro-
bability during one stimulus frame, divided by the duration
of the frame. To calculate this, we count the number of spikes
that the neuron fired during the final frame of the segment.
The segments are then collected into bins according to the
projection values. For each bin, the averages of the projection
values and the neuronal response are calculated and plotted
against each other as in Fig. 5c.

Most strikingly, for the present case, the firing rate for
PC1 is “U-shaped”, which means that large positive projec-
tions and large negative projections both caused the cell to
fire. This phenomenon becomes more evident when we take
a look at the projections of all spike-triggered stimulus seg-
ments on both PC1 and PC2. When these projection values
are displayed in a scatter plot, as in Fig. 5d, two clouds of
data points become apparent. For almost all spikes, the pro-
jection onto PC2 was negative, but the projection onto PC1
could have either large positive or large negative values.

Another illustrative way of displaying this information is
achieved by plotting the instantaneous firing rate as a function
of both projection values, as in Fig. 5e. Here, the data are
combined into bins with similar projections onto PC1 and
PC2, respectively. For each bin, the firing rate is calculated as
the average rate during the final stimulus frame of all stimulus
segments in that bin. In contrast to the scatter plot of Fig. 5d,
this form of display takes into account that, because of the
Gaussian distribution of stimulus values, many more stimuli

are presented near the center of the plots, where the projection
values are close to zero, than in the periphery.

The scatter plot in Fig. 5d and the display of the firing rate
in Fig. 5e show that the spike-triggered stimulus ensemble
can be separated into two clusters. These two-dimensional
displays reinforce the notion that two fundamentally different
types of stimuli elicit spikes. Both PC1 and PC2 influence
the shapes of the clusters, and it is likely that further stimu-
lus components (corresponding to further eigenvalues of the
spectrum shown in Fig. 5a) also contribute to separating the
clusters.

Different techniques have been utilized to separate the
clusters, such as a formal multi-dimensional cluster analysis
(Geffen et al. 2007), a classification of the spike-triggered
stimulus segments depending on whether they show an ave-
rage intensity increase or decrease in a short window prior to
the spike (Greschner et al. 2006), or a separation along the
zero axis of the first principal component PC1 (Fairhall et al.
2006; Gollisch and Meister 2008). Here, we follow the latter
approach, which yields a good separation of the clusters in
many cases, owing to the pronounced U-shape of the firing
rate dependence on the PC1 projection in Fig. 5c, where the
firing rate drops down to zero when the projection is zero.
We thus assign the stimulus segments to clusters depending
on whether the projection onto PC1 was positive or nega-
tive. This approach allows us to easily automate this step in
the analysis explained below. We then calculate the spike-
triggered average for each cluster separately (Fig. 5f). Their
shapes are not constrained to the space spanned by PC1 and
PC2; the calculation is performed in the original full stimulus
space. This takes into account that the two clusters may also
differ along further stimulus dimensions. The reduction to the
two dimensions PC1 and PC2 merely serves for separating
the clusters.

The shapes of the two obtained filters, shown in Fig. 5f,
can be interpreted as representing processing through ON and
OFF bipolar cells, respectively. The strong biphasic nature
of both these filters results from the fact that the spatially
homogeneous stimulus not only excites receptive field cen-
ters of bipolar cells and ganglion cells, but also the inhibi-
tory surround. The filtering characteristics of this surround
are typically temporally delayed and inverted with respect
to the center (ON-center cells have an OFF surround and
vice versa). Their superposition thus yields the biphasic fil-
ter shape under activation of the whole space.

Of particular importance is the observation that the OFF
filter has “faster kinetics”, i.e., its peaks are closer to time
zero as compared to the ON filter. This means that activa-
tion of the OFF filter affects spike probability with a shorter
latency—an observation that is of obvious importance for
explaining the differences in latency for the flashed gratings.
This was consistently observed in all cells in the salaman-
der retina where the separation of ON and OFF contribu-
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Fig. 6 Separating the spatiotemporal field into ON and OFF fields.
a Spatiotemporal receptive field and ON and OFF fields. The goal of
the analysis shown in the following panels is to separate the receptive
field into its contributions from ON and OFF pathways. This is done
for each row of the receptive field separately (corresponding to specific
locations on the retina). For the locations marked with 1, 2, and 3, the
results are drawn in the three columns of the subsequent panels. b Eigen-
values of the principal component analyses. In each case, the highest
eigenvalue is separated from the other eigenvalues, which cluster around
unity. The lowest eigenvalue is hardly separated from the rest. c Princi-
pal components PC1 and PC2 together with the spike-triggered average

STA (dashed line) for each of the three locations. d Instantaneous firing
rates, depending on the projections of the stimulus onto PC1 and PC2.
Although not as clear as in Fig. 5e, the plots still show two clusters of
stimuli that lead to high firing rate at large positive and large negative
projections onto PC1. e Filters obtained by separating the clusters along
the vertical zero-axis in d and calculating the spike-triggered average
separately for each cluster. Note that, in each case, the OFF filter has a
shorter time-to-peak than the ON filter by about 30 ms. By combining
all ON filters and all OFF filters into a two-dimensional color plot, the
ON and OFF fields of panel a are obtained

tions was possible. The likely cause is a delay in the pro-
cessing of ON stimuli that results from the involvement of
metabotropic receptors at the synapse between photorecep-

tors and ON bipolar cells (Ashmore and Copenhagen 1980;
Yang 2004). Now that we have separated contributions from
the ON and OFF pathway for spatially homogeneous stimuli
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and obtained two biologically plausible filters, let us consider
the case where the stimulus includes spatial structure.

6.2 Spatially local ON and OFF filters

In order to extend the approach presented in the previous sec-
tion to the identification of spatially local ON and OFF filters,
we use data from experiments where the stimulus consisted of
independently flickering stripes on the screen. As explained
above, this stimulus can be applied to compute a spatiotem-
poral receptive field with one spatial dimension (Fig. 1d).
The goal now is to obtain a separation of this spatiotempo-
ral receptive field into the ON and OFF fields, as shown in
Fig. 6a. The analysis follows the same path as for the spatially
homogeneous stimulus, but is done for each stimulus stripe
separately. However, a significant challenge arises from the
fact that a given stripe of the stimulus is not solely respon-
sible for generating the spikes—the influence of other stripes
creates a background of activity, which for the purpose of the
current analysis acts as noise.

As for the case of spatially homogeneous stimulation, the
relevant stimulus structures are again obtained from a princi-
pal component analysis. The analysis is shown in Fig. 6b–e,
for those three stripes that lie in the center of the spatial
receptive field of the sample neuron. Each eigenvalue spec-
trum (Fig. 6b) displays one eigenvalue that is much larger
than unity. Most of the other eigenvalues are close to unity
so that other relevant stimulus structures appear to be lar-
gely covered by noise. Consequently, as shown in Fig. 6c,
the principal component corresponding to the largest eigen-
value, PC1, has a similar shape as previously, whereas the
principal component corresponding to the minimal eigenva-
lue, PC2, is often dominated by noise. As we had seen in the
previous section, however, a single stimulus component can
suffice to separate ON and OFF contributions.

Indeed, a plot of the instantaneous firing rate in the space
of PC1 and PC2 (Fig. 6d) reveals that spikes appear prima-
rily when the projection onto PC1 is either strongly positive
or strongly negative. Thus, we can separate stimulus seg-
ments activating the ON and OFF pathway, respectively, by
selecting for positive or negative projection onto PC1. The
resulting spike-triggered averages for each cluster, shown in
Fig. 6e, display similar differences in kinetics as for the case
of spatially homogeneous stimulation (Fig. 5f); for each sti-
mulus stripe, the peaks of the OFF filters are closer to time
zero than those of the ON filters. Also, all filters show a mild,
but systematic biphasic structure, evident by the slow tail of
opposite polarity as compared to the main peak. The bipha-
sic nature of the filter is less pronounced than in the case of
spatially homogeneous stimulation; the inhibitory surround
that is responsible for the delayed inverted peak in the filter is
still activated for individual stripes of the stimulus, but pro-

portionally less so as compared to the spatially homogeneous
stimulation.

Note that it is important to revert to the original stimulus
segments for calculating the spike-triggered averages sepa-
rately for the two clusters. The fact that the obtained ON and
OFF filters are not exact inversions of each other, but indeed
show systematic differences in their timing, underscores the
importance of stimulus structures beyond the first principal
component. Note also that the sets of ON filters and OFF
filters are very similar across different stripes despite the fact
that these were analyzed independently. This supports the
reliability of the method. The actual test for the performance
of the obtained model, however, is how closely it fits the data
of the latency tuning curve (Fig. 4f).

7 Discussion

Neuronal models that are based on a single linear filter in
the first stage of processing have a long and successful his-
tory, in the form of the widely used LN model (Hunter and
Korenberg 1986; Chichilnisky 2001; Baccus and Meister
2002) as well as in combination with more complex mecha-
nisms for processing and spike generation after the filte-
ring stage (Keat et al. 2001; Pillow et al. 2005; Gollisch
2006). When parallel processing pathways are relevant for
the function of a neuron, these single-filter models may be too
simplistic. The natural extension is to use multiple parallel fil-
ters that represent these pathways. This more complex model
structure, however, naturally brings about a more deman-
ding task of extracting the model parameters from experi-
mental data. Several earlier investigations have shown how
generic multi-filter models can be obtained based on spike-
triggered covariance analysis (de Ruyter van Steveninck and
Bialek 1988; Schwartz et al. 2006) or on information theo-
retic approaches (Paninski 2003; Sharpee et al. 2004; Pillow
and Simoncelli 2006).

In the examples presented here, the goal was to find fil-
ters that correspond to the synaptic inputs from a pool of
bipolar cells, including both ON-type and OFF-type bipolar
cells. One particular challenge for separating contributions
from the ON and OFF pathways is that their preferred sti-
muli are nearly inverted with respect to each other. There-
fore, they cannot naturally emerge as separate filters from a
spike-triggered covariance analysis, for which the resulting
filters are by design orthogonal to each other. Nevertheless,
this covariance analysis serves as a good starting point
because it singles out stimulus components for which the
variance in the spike-triggered stimulus ensemble is particu-
larly large. Such a stimulus component is a good candidate
for providing a separation of clusters with nearly inverted
stimulus characteristics.
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One particular goal for focusing on separating ON- and
OFF-pathway contributions is to use the resulting mode-
ling framework as a data-analysis tool. The parameters of
the model, such as the shapes of the filters and the relative
strength of ON- and OFF-pathway contributions are here
obtained for a specific stimulus context and will likely vary
with this context. In the presented example, this context is
given by the mean light intensity and the variance of the fli-
ckering light stimulus. Under different stimulus conditions,
one may obtain different values for the model parameters,
which could be used, for example, to investigate adapta-
tion phenomena, similar to applications of the LN model
(Chander and Chichilnisky 2001; Kim and Rieke 2001;
Baccus and Meister 2002). In the discussed work of
Geffen et al. [2007], the multi-filter model was used in this
way to study the effect of saccadic stimulus shifts, which
revealed that the weights of the ON- and OFF-pathways tran-
siently change after the saccade. For a better mechanistic
understanding of these adaptive and contextual effects on
the gating of these pathways, future extensions of the multi-
pathway model may aim at incorporating how these pathway
weights are determined by the stimulus context.

The applied model structure can be viewed as a hybrid
between a purely phenomenological and a biologically ins-
pired approach; based on the descriptive LN model, the use of
parallel, spatially localized ON and OFF filters aims at cap-
turing properties of the neuronal circuit that are thought to be
fundamental for the investigated phenomena. In the discus-
sed examples, the involvement of ON and OFF pathways was
corroborated by experiments under pharmacological pertur-
bation of the circuitry.

Generally speaking, however, it should be noted that fai-
lure of the single-filter LN model does not always mean that
a multi-filter model is required. In fact, additional dyna-
mics that follow after stimulus integration, such as spike
generation dynamics (Aguera y Arcas and Fairhall 2003;
Fairhall et al. 2006) and spike time jitter (Aldworth et al.
2005; Dimitrov and Gedeon 2006; Gollisch 2006) can lead to
the appearance of multiple relevant filters in a spike-triggered
covariance analysis. Although the multi-filter models may
then still provide accurate descriptions of the neuronal res-
ponses, extensions of the model cascade with explicit spike-
generation dynamics (Keat et al. 2001; Pillow et al. 2005) or
additional filtering stages (Victor and Shapley 1979;
Korenberg and Hunter 1986; Sakai 1992) may provide a
closer match to the biological processes. In the retina, for
example, other successful approaches include Wiener series
modeling (Marmarelis and Naka 1972) and LNL cascades
(Spekreijse 1969; Victor and Shapley 1979). In fact, by ana-
lyzing the structures of first- and second-order Wiener ker-
nels, one may estimate whether within the realm of LNL
cascades, linear filtering acts primarily before the nonlinear

transformation, after it, or both (Victor and Shapley 1979,
1980; Korenberg and Hunter 1986; Korenberg et al. 1989).

For the ganglion-cell responses analyzed here, such an
analysis supports the importance of linear filtering that
precedes the nonlinearity. For some cells, the second-order
Wiener kernel indicates additional filtering that follows after
the nonlinearity, which may correspond to feedback dyna-
mics resulting from adaptation or gain control. These dyna-
mics are not included in the model structure discussed here,
which instead focuses on capturing a specific aspect of the
retinal circuitry, the convergence of ON and OFF pathways.
For a more general model of the cells’ response characteris-
tics, additional dynamics should also be considered.

Generalizing the model structure in such a way is straight-
forward; the parallel filters can act as a frontend to existing
modules for gain control (Victor 1987; Berry and Meister
1998; Berry et al. 1999; Pillow et al. 2005) or additional fil-
tering (Spekreijse 1969; Victor and Shapley 1979), which
would act on the activation function that results from combi-
ning the spatially localized ON and OFF filter contributions.
Fitting the complete model structure to experimental data
becomes, of course, increasingly challenging with increasing
number of model parameters. How well it works will depend
on the specific model extension and the amount of available
data. A promising approach here seems to be to resort to
maximum-likelihood estimation techniques, for which the
parallel filters can be initialized by the shapes obtained from
the separation procedure described here. This approach is
also amenable to various desirable model extensions discus-
sed below.

7.1 Shortcomings and extensions

One shortcoming of the current approach is the ad-hoc defini-
tion of the spatial subfields. For ease of analysis, the subfields
are modeled as rectangular and non-overlapping, whereas
actual bipolar cells are better described by a smooth center-
surround structure (Dacey et al. 2000; Baccus et al. 2008) that
suggests, for example, a “difference-of-Gaussians” model.
To fit such a more elaborate model to data will require sti-
mulation with finer spatial structures and consequently more
experimental time for data acquisition.

A further weakness of the current approach is that it relies
on a good separation of the two clusters corresponding to
the ON and OFF pathways. Because each spike is fully assi-
gned to one of the two clusters, any overlap of the clusters
would distort the resulting filter shapes. This problem could
become more severe for a system where the filters are not
nearly inverted versions of each other; in that case, both path-
ways could be activated at the same time. A potential remedy
would be to use the described procedure only to obtain an
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a b c

Fig. 7 ON and OFF filters and nonlinearities obtained from a
maximum-likelihood analysis. Maximum-likelihood analysis was
applied to the data of Fig. 5 obtained under spatially homogeneous
flicker stimulation. The model consisted of two parallel temporal filters
and subsequent nonlinearities, as in Fig. 2. The nonlinearities were
here parameterized by a threshold and a second-order polynomial for
values above the threshold. Using a Poisson process firing model, the
model likelihood was iteratively maximized by a conjugate gradient

ascent algorithm. a Spike-triggered averages of the separated clusters
as in Fig. 5f. These were used as starting values of the algorithm.
b Filters at the end of the algorithm. The final filters are nearly identical
to the spike-triggered averages of a. c Nonlinearities associated with
each filter. The final nonlinearities substantially differ from the original
half-wave rectification, which is shown by the dashed line. In particular,
the thresholds consistently assume values larger than zero

initial model estimate which is then refined, for example,
by a maximum-likelihood fitting procedure (Paninski et al.
2004; Pillow et al. 2005). Initial explorations of this method
showed that the obtained ON and OFF filters are robust in
this respect—the maximum-likelihood procedure does not
alter their shapes (Fig. 7b).

A simplification in the model comes from the fixed
half-wave rectification that follows after each filter. The shape
of this nonlinearity is motivated by findings that support recti-
fication of synaptic inputs from bipolar cells to ganglion cells
(Victor and Shapley 1979; Demb et al. 2001). For the case of
spatially homogeneous stimulation, the shape of the nonli-
near transformations could also be obtained from the experi-
mental data by analyzing the relationship between the spikes
from an individual spike-triggered stimulus cluster (Fig. 5d)
and the output of the corresponding ON or OFF filter. For the
case of flickering stripes, however, this approach is not suited
because of the larger number of filters whose outputs simulta-
neously affect the firing rate. The relation between the firing
rate and an individual filter (i.e., the marginal spike proba-
bility that depends only on a single filter output) is distorted
by the large number of spikes that are generated primarily
by activation from neighboring stripes. One may also consi-
der a full multi-dimensional exploration of the nonlinearity
by sampling the spike probability as depending on the joint
outputs of all spatially local ON and OFF filters. However,
given that around six to ten filters are typically required to
span the receptive field center, this analysis is currently pre-
cluded by the large amounts of data that would be required
for sufficient sampling. As a suitable alternative, a parame-
terization of the nonlinear transformation could be applied
and included in a maximum-likelihood fitting procedure. Ini-
tial explorations suggest that threshold-linear or threshold-
quadratic nonlinearities with positive thresholds may lead to
an improved model version (Fig. 7c).

Finally, the spike-generation part of the model is currently
limited to predicting the first spike in response to a stimulus.

For a full account of the neuronal response, including the
prediction of the time-dependent firing rate, more details are
needed in the final model stage. In particular, effects of refrac-
tory period, adaptation, and contrast gain control need to be
considered. Obtaining such a complete model description for
spatiotemporal stimulation of ON–OFF-type neurons from
experimental data will be a formidable, yet worthwhile task.

Acknowledgments This work was supported by grants from the
National Eye Institute (M.M.) and the Human Frontier Science
Program Organization (T.G.) and by the Max Planck Society.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Aguera y Arcas B, Fairhall AL (2003) What causes a neuron to spike.
Neural Comput 15(8):1789–1807

Aldworth ZN, Miller JP, Gedeon T, Cummins GI, Dimitrov
AG (2005) Dejittered spike-conditioned stimulus waveforms yield
improved estimates of neuronal feature selectivity and spike-
timing precision of sensory interneurons. J Neurosci 25(22):5323–
5332

Ashmore JF, Copenhagen DR (1980) Different postsynaptic events in
two types of retinal bipolar cell. Nature 288(5786):84–86

Baccus SA, Meister M (2002) Fast and slow contrast adaptation in reti-
nal circuitry. Neuron 36(5):909–919

Baccus SA, Ölveczky BP, Manu M, Meister M (2008) A retinal circuit
that computes object motion. J Neurosci 28(27):6807–6817

Berry MJ, Brivanlou IH, Jordan TA, Meister M (1999) Anticipation of
moving stimuli by the retina. Nature 398(6725):334–338

Berry MJ, Meister M (1998) Refractoriness and neural precision. J Neu-
rosci 18(6):2200–2211

Burkhardt DA, Fahey PK, Sikora M (1998) Responses of ganglion cells
to contrast steps in the light-adapted retina of the tiger salamander.
Vis Neurosci 15(2):219–229

Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA,
Gallant JL, Rust NC (2005) Do we know what the early visual
system does? J Neurosci 25(46):10577–10597

123



Biol Cybern (2008) 99:263–278 277

Chander D, Chichilnisky EJ (2001) Adaptation to temporal contrast in
primate and salamander retina. J Neurosci 21(24):9904–9916

Chichilnisky EJ (2001) A simple white noise analysis of neuronal light
responses. Network 12(2):199–213

Dacey D, Packer OS, Diller L, Brainard D, Peterson B, Lee
B (2000) Center surround receptive field structure of cone bipolar
cells in primate retina. Vision Res 40(14):1801–1811

Dayan P, Abbott LF (2005) Theoretical neuroscience: computational
and mathematical modeling of neural systems. The MIT Press,
Cambridge, MA, USA

de Monasterio FM (1978) Properties of ganglion cells with atypical
receptive-field organization in retina of macaques. J Neurophysiol
41(6):1435–1449

de Ruyter van Steveninck R, Bialek W (1988) Coding and informa-
tion transfer in short spike sequences. Proc Soc Lond B Biol Sci
234:379–414

Demb JB, Zaghloul K, Haarsma L, Sterling P (2001) Bipolar cells
contribute to nonlinear spatial summation in the brisk-transient
(Y) ganglion cell in mammalian retina. J Neurosci 21(19):7447–
7454

Dimitrov AG, Gedeon T (2006) Effects of stimulus transformations
on estimates of sensory neuron selectivity. J Comput Neurosci
20(3):265–283

Fairhall AL, Burlingame CA, Narasimhan R, Harris RA, Puchalla JL,
Berry MJ (2006) Selectivity for multiple stimulus features in reti-
nal ganglion cells. J Neurophysiol 96(5):2724–2738

Felsen G, Touryan J, Han F, Dan Y (2005) Cortical sensitivity to visual
features in natural scenes. PLoS Biol 3(10):e342

French AS, Marmarelis VZ (1995) Nonlinear neuronal mode analysis
of action potential encoding in the cockroach tactile spine neuron.
Biol Cybern 73(5):425–430

Geffen MN, de Vries SE, Meister M (2007) Retinal ganglion cells can
rapidly change polarity from Off to On. PLoS Biol 5(3):e65

Gerstner W, Kistler WM (2002) Spiking neuron models. Cambridge
University Press, London

Gollisch T (2006) Estimating receptive fields in the presence of spike-
time jitter. Network 17(2):103–129

Gollisch T, Meister M (2008) Rapid neural coding in the retina with
relative spike latencies. Science 319(5866):1108–1111

Greschner M, Thiel A, Kretzberg J, Ammermüller J (2006) Complex
spike-event pattern of transient ON–OFF retinal ganglion cells.
J Neurophysiol 96(6):2845–2856

Hare WA, Owen WG (1996) Receptive field of the retinal bipolar cell:
a pharmacological study in the tiger salamander. J Neurophysiol
76(3):2005–2019

Herz AV, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-
neuron dynamics and computations: a balance of detail and abs-
traction. Science 314(5796):80–85

Hunter IW, Korenberg MJ (1986) The identification of nonlinear bio-
logical systems: Wiener and Hammerstein cascade models. Biol
Cybern 55(2–3):135–144

Keat J, Reinagel P, Reid RC, Meister M (2001) Predicting every spike:
a model for the responses of visual neurons. Neuron 30(3):803–
817

Kim KJ, Rieke F (2001) Temporal contrast adaptation in the input and
output signals of salamander retinal ganglion cells. J Neurosci
21(1):287–299

Kirchner H, Thorpe SJ (2006) Ultra-rapid object detection with sacca-
dic eye movements: visual processing speed revisited. Vision Res
46(11):1762–1776

Korenberg MJ, Hunter IW (1986) The identification of nonlinear bio-
logical systems: LNL cascade models. Biol Cybern 55(2–3):
125–134

Korenberg MJ, Sakai HM, Naka K (1989) Dissection of the neuron net-
work in the catfish inner retina. III. Interpretation of spike kernels.
J Neurophysiol 61(6):1110–1120

Land MF (1999) Motion and vision: why animals move their eyes.
J Comp Physiol A 185(4):341–352

Levick WR, Thibos LN, Cohn TE, Catanzaro D, Barlow HB (1983)
Performance of cat retinal ganglion cells at low light levels. J Gen
Physiol 82(3):405–426

Marmarelis PZ, Naka K (1972) White-noise analysis of a neuron chain:
an application of the Wiener theory. Science 175(27):1276–1278

Marmarelis VZ (1989) Signal transformation and coding in neural sys-
tems. IEEE Trans Biomed Eng 36(1):15–24

Marmarelis VZ, Orme ME (1993) Modeling of neural systems by use
of neuronal modes. IEEE Trans Biomed Eng 40(11):1149–1158

Meister M, Berry MJ (1999) The neural code of the retina. Neuron
22(3):435–450

Meister M, Pine J, Baylor DA (1994) Multi-neuronal signals from
the retina: acquisition and analysis. J Neurosci Methods 51(1):
95–106

Paninski L (2003) Convergence properties of three spike-triggered ana-
lysis techniques. Network 14(3):437–464

Paninski L (2004) Maximum likelihood estimation of cascade point-
process neural encoding models. Network 15(4):243–262

Paninski L, Pillow JW, Simoncelli EP (2004) Maximum likelihood esti-
mation of a stochastic integrate-and-fire neural encoding model.
Neural Comput 16(12):2533–2561

Pillow JW, Paninski L, Uzzell VJ, Simoncelli EP, Chichilnisky
EJ (2005) Prediction and decoding of retinal ganglion cell
responses with a probabilistic spiking model. J Neurosci
25(47):11003–11013

Pillow JW, Simoncelli EP (2006) Dimensionality reduction in neural
models: an information-theoretic generalization of spike-triggered
average and covariance analysis. J Vis 6(4):414–428

Potter MC, Levy EI (1969) Recognition memory for a rapid sequence
of pictures. J Exp Psychol 81(1):10–15

Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatio-
temporal elements of macaque v1 receptive fields. Neuron 46(6):
945–956

Sakai HM (1992) White-noise analysis in neurophysiology. Physiol
Rev 72(2):491–505

Schwartz O, Chichilnisky EJ, Simoncelli EP (2002) Characterizing
neural gain control using spike triggered covariance. Adv Neu-
ral Information Proc Systems 14:269–276

Schwartz O, Pillow JW, Rust NC, Simoncelli EP (2006) Spike-
triggered neural characterization. J Vis 6(4):484–507

Segev R, Goodhouse J, Puchalla J, Berry MJ (2004) Recording spikes
from a large fraction of the ganglion cells in a retinal patch. Nat
Neurosci 7(10):1154–1161

Segev R, Puchalla J, Berry MJ (2006) Functional organization of gan-
glion cells in the salamander retina. J Neurophysiol 95(4):2277–
2292

Shapley RM, Victor JD (1978) The effect of contrast on the transfer
properties of cat retinal ganglion cells. J Physiol 285:275–298

Sharpee T, Rust NC, Bialek W (2004) Analyzing neural responses to
natural signals: maximally informative dimensions. Neural Com-
put 16(2):223–250

Slaughter MM, Miller RF (1981) 2-Amino-4-phosphonobutyric acid:
a new pharmacological tool for retina research. Science
211(4478):182–185

Spekreijse H (1969) Rectification in the goldfish retina: analysis by
sinusoidal and auxiliary stimulation. Vision Res 9(12):1461–1472

Theunissen FE, David SV, Singh NC, Hsu A, Vinje WE, Gallant
JL (2001) Estimating spatio-temporal receptive fields of auditory
and visual neurons from their responses to natural stimuli. Network
12(3):289–316

Thiel A, Greschner M, Ammermüller J (2006) The temporal struc-
ture of transient ON/OFF ganglion cell responses and its rela-
tion to intra-retinal processing. J Comput Neurosci 21(2):
131–151

123



278 Biol Cybern (2008) 99:263–278

Thorpe S, Delorme A, Van Rullen R (2001) Spike-based strategies for
rapid processing. Neural Netw 14(6–7):715–725

Touryan J, Felsen G, Dan Y (2005) Spatial structure of complex cell
receptive fields measured with natural images. Neuron 45(5):
781–791

Touryan J, Lau B, Dan Y (2002) Isolation of relevant visual fea-
tures from random stimuli for cortical complex cells. J Neurosci
22(24):10811–10818

van Hateren JH, Ruttiger L, Sun H, Lee BB (2002) Processing of natural
temporal stimuli by macaque retinal ganglion cells. J Neurosci
22(22):9945–9960

Victor J, Shapley R (1980) A method of nonlinear analysis in the
frequency domain. Biophys J 29(3):459–483

Victor JD (1987) The dynamics of the cat retinal X cell centre. J Physiol
386:219–246

Victor JD, Shapley RM (1979) The nonlinear pathway of Y ganglion
cells in the cat retina. J Gen Physiol 74(6):671–689

Werblin FS, Dowling JE (1969) Organization of the retina of the
mudpuppy, Necturus maculosus. II. Intracellular recording.
Neurophysiol 32(3):339–355

Yang XL (2004) Characterization of receptors for glutamate and GABA
in retinal neurons. Prog Neurobiol 73(2):127–150

123


	Modeling convergent ON and OFF pathways in the earlyvisual system
	Abstract
	1 Introduction
	2 The LN modeling approach
	2.1 Single-filter models
	2.2 Multi-filter models
	2.3 Alternatives to spike-triggered analyses

	3 LN models of retinal ganglion cell responses
	3.1 Single-filter models
	3.2 Multi-filter models

	4 Spike timing at stimulus onsets
	5 Modeling first-spike latencies for ON--OFFganglion cells
	6 Obtaining the filters for an ON--OFF multi-pathway model
	6.1 ON and OFF filters for spatially homogeneous stimulation
	6.2 Spatially local ON and OFF filters

	7 Discussion
	7.1 Shortcomings and extensions

	Acknowledgments


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


