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Equation of state for helium-4 from microphysics
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We compute the free energy of helium-4 near the lambda transition based on an exact renormalization-group
equation. An approximate solution permits the determination of universal and nonuniversal thermodynamic
properties starting from the microphysics of the two-particle interactions. The method does not suffer from
infrared divergences. The critical chemical potential agrees with experiment. This supports a specific formu-
lation of the functional integral that we have proposed recently. Our results for the equation of state reproduce
the observed qualitative behavior. Despite certain quantitative shortcomings of our approximation, this dem-
onstrates thaab initio calculations for collective phenomena become possible by modern renormalization-
group methods.
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[. INTRODUCTION the macroscopic pictures. It starts with just the microscopic
interactions. After integrating out the single-particle degrees
When we regard a multiparticle system such as helium-49f freedom consecutively from the effective ultravio(etVv)
we can choose between two possible points of view. We cagutoff at large momentum down to zero momentum, a com-
zoom in on the details of the interactions, focusing on only aPlete thermodynamic description of the system is obtained.
few particles, and in a first approach we might choose to This basic ide&is implemented in our approach by a
study how the interactions of just two particles can be defunctional differential equation that represents the lowering
scribed. This is typically investigated by scattering experi-Of an infrared cutoff. There is, in principle, no restriction on
ments, and a quite precise picture of the two-particle interthe relative interaction strength or the density of the system
action for helium-4 exist5.0n the other hand, we can also @s in most perturbative approaches. Details of the method
take a broader view and tumn to the thermodynamic propercan be found elsewhefe. _ _
ties of many particles where properties such as pressure, tem- A similar approach to the calculation of nonuniversal
perature, and superfluidity ariée’ properties for Bose condensates by renormalization-
These two pictures are, of course, connected to each oth8foup methods was taken by Bijlsma and Stoof, restricted
as the thermodynamic properties are large scale effects of ti@ low-density gased. Another recent application of
(local) microscopic interactions. Yet for helium-4 in the in- renormalization-group methods to superfluid helium com-
teresting region around the superfluid phase transition, Rined with the exploitation of the underlying symmetry and
complete mathematical description, which makes this contelated Ward identity has successfully treated the infrared
nection explicit, is still lacking, to our best knowledge. A divergences that occur in the computation of low-lying
general problem in the calculation of thermodynamic prop_ex0|tat|on§°
erties is the occurrance of infrared divergences. Here, we
present an approach that is free of those divergences. It is Il. THE ACTION FOR HELIUM-4
based upon an exact renormalization-group equation.
The goal of this work is threefold. First of all, we dem- .
onstrate how nonuniversal properties of thermodynamiﬂ;Onlan operator
systems can be calculated by means of an exact 2 1
renormalization-group equation. Second, we present results;— (__ fa + 2 f ]
for the critical chemical potential and the equation of stateﬂ q \2m #)%%a™ 3 ch%vq Bay+ oo (D2,
for helium-4 obtained merely from the microscopic interac- (1)
tions. And third, we show the necessity of a shift of therpg agen of the helium atom is 3.73 GeY, is the chemi-
chemical potential in the action, which arises from the math< potential, and (q) the two-particle interaction potential.
ematlca_l manlpulr_;\tlons of the _functlonal integral and be- Such a description is clearly not valid below the atomic
comes important in the calculation of the phonon spectrum, .

- . . ale, and we therefore assume a UV momentum cutoff pro-
and the critical ch_em|c_a| potential. We have rgported on th‘?)ortional to the inverse atomic length scale given by the
appearance of this shift earlfeand now show its effect in

e atomic diameteiw: A=(27)/o, q><A2. (In all formulas,
application.

The renormalization ar is well suited for the treatm r1tunits are chosen such that=c=kg=1.) We choose to de-
€ renormalization group 1S well suited for In€ reatmentyq ;o e interaction by a simple Lennard-Jones potential
of the superfluid phase transition. While a perturbative ap-
o2 0_6)

We describe helium-4 by the many-body bosonic Hamil-

+

proach is plagued by infrared divergences, the renormaliza-
tion group naturally circumvents these difficulties. It also ”(r):45(3__s 2)
presents an intuitive connection between the microscopic and r r
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| 1 1 | | 1
0 1 2 3 4 J 6 7 This action differs in the appearance 6 from a
g [1/A] functional-integral approach proposed earlier within a

coherent-state ansatz, where a complete set of eigenstates of
for the annihilation operators is used for the conversion of the
partition function to a functional integraf.In contrast, Eq.
(7) is obtained by transforming the creation and annihilation
operators in the Hamiltoniafl) to location and momentum
yoperators before the conversion to a functional integral. This
allows us to choose an operator ordering which avoids un-
controllable contributions from next-to-leading-order terms
in the discretization parameter. The correctness of our ap-
proach has been tested by numerical calculations in quantum
mechanic$.

FIG. 1. Fourier transform of the two-particle interaction
helium-4.

with the maximum energy of attractioe=10.22 K and
0=2.556 A. This fits the measured interaction potential ver
accurately. For the definition of the interaction in the mo-
mentum domain, we identify the atomic diametewith the
scattering lengtht and cut off the potential at small distances
while fixing v(gq=0)=(4wo)/(Vm) as required by low-
energy scattering theory. Her¥, is the system’s volume,
which we will let eventually approach infinity. The Fourier

transform of the two-particle potential thus derived is shown Il PHONON SPECTRUM

in Fig. 1.
The actionS[x,x*] for helium-4, which is a functional From the actior(7), we can already calculate the phonon
depending on the four-dimensional classical complex figld velocity for a weakly coupled Bose condensatd at0. Al-
is defined via the grand canonical partition function though this can also be obtained by a Bogoliubov transfor-
mation of the Hamiltonian operatét), we sketch the calcu-
Tre—,BH:f D)(DX*E_S[X’X*] 3) Iation. as it shows how() cancel; a corr(_esponding term
evolving from the one-loop correction. In this wdy,acts as

with 8=1/T denoting the inverse temperature. As we have® counterterm though It ha_s naturally emerged from the con-
struction of the functional integral.

shown earlief, great care has to be taken in constructing the . :
action, and for the Hamiltonian operatét), we have ob- . The genergtlng f_unctlonal of the connected Green func-
' ' tionsW[ J,J* ] is defined by

tained a perhaps unexpected skilftfor the chemical poten-
tial w in the action. One findéup to a constant

eW[J,J*lzf DxDx* exp[ —Sx:x*]

i [° NN
Shex*1= | A 2 xq (0] 7o+ 5= @ el
2 (J:,qxn,q+Jn,qx:,q>] : ®)
1 y
- * *
- 2 ql%,q qu*q(T)quq(T) and the generating functional of thé1 Green functions by
the Legendre transform
Xv () Xq,( T)qu(T)} 4
Ple,¢"]==INWI,J* ]+ 2, (954¢na* Inagha)-
with 4 9)
1 To calculate the phonon spectrum, we need the zeros of the
Q=3 ; [v(a)+v(0)]. (5 inverse full propagatofF ®). We restrict ourselves to the case
of a static and homogeneous condensate,= ¢ d, odq,o-
All momenta are restricted by the UV cutaff<A2. Considering only low-momentum excitations, we can ap-
It is convenient to express the field as a sum over Matproximate the interaction potentialq) by v(0). Thetree-
subara frequencies,=2mn/, level approximation yields
i i . Lole,e*1=Sle,¢*] (10
= e'®“nT s .
Xa(7) N Xn.a ©) and therefordfor fixed n andq)
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82S[ 0, 0% ] 82 ¢, 0* ] momentag?>k? are included in the functional integral. The

. : : variation of the effective action witlk is described by an
8¢n,q9¢n.q 0@ —n,-q9¢n.q exact flow equation.

re= For notational simplicity, we rescale the fields by absorb-

0 . : . . .

5S¢, 0% ] 5S¢, 0* ] ing a factor of{/B/(2mV) into the field variable and define

w=2m(u+Q) andv(q)=4m?Vuv(q)/B. For the action this

yields

5@:,q5¢tn,—q 5‘P—n,—q5‘Ptn,—q

iw,+q v(0)¢*?

s an SoeX* 1=V X g(2iMent 6*=w)xng
v(0)e? —iw,+q] ’

where

q=09%/(2m)— u—Q+20(0)|¢|2. (12)

X Xng.aXng.q,0 (D) O inyngin,.  (18)
The one-loop correction is obtained as a2 e fa 2 et
1 In the grand canonical partition function, we add source
Ty, ¢*]==Trin F(()Z) (13 termsJ and an infrared regulatoR,(n,q) and define the
2 functionalW,J J,J* ] as the generating functional of the con-

with the trace including a sum ofand momenta. Neglecting nected Green functions in the presence of an infrared cutoff

terms of O[v(0)?], we obtain in the limit3— o the simple '
expression for the leading term,

o o eWk[J,J*]:J DxDx* exp[ —Sx.x*]
0 BQ

r{9= : (14)

+% (J:,q)(n,q""]n,q)(:,q_VX:,qu(naq)Xn,q) .
This cancels the corresponding termdnappearing in Eq.

(11). (19
ForT?)+ T, we can now compute the eigenvalues:  For the infrared regulator, we choose
q2 7 2
= _ 2 i 2 2 4 q
A1 B(Zm p+20(0)|@?= \(iwy)*+v(0)% ¢l ) Rk(nyQ):k—szn,o- (20)
(15 exp( q_) -1
k2

The phonon energy spectrum is determined by the zeras of

for complzex wy [with the first-order approximatidh »  Here, 7, is a wave-function renormalization, which will be
=v(0)|el”]: defined below in Eq(23). We note that this particular regu-
1 lator cuts off the momentum modes wit< k? only for the
_ —1al. A= 2 2 n=0 Matsubara frequency. Thex 0 modes are not affected
E(@=ion(@=lq] mv(0)|(p| TO@) (19 and contribute fully in the functional integrél9). For large
enoughT, the integration of then#0 frequencies poses no
problem since temperature acts as an infrared regulator for
these modes. Nevertheless, a future extension of the infrared

cutoff to then#0 Matsubara modes may be welcome for
IV. FLOW EQUATION low T.

The physical situation of vanishing sources corresponds 1he effective average action is defined as
to an extremum of” since '/ S¢=J*. The value ofl" at

with the correct phonon velocity of a weakly coupled Bose
condensate af=0.13

— *7ic di

the extremunT’eq=I'[ @eq, gql is directly related to the free T e, 0* 1= — W+ > [37 q@na*Ina®hq
energyF by ng

F=TI gt uN. 17 ~Veh qRi(N, ) ¢n - (2
For a computation of thermodynamic quantities, we thereAs the infrared cutofk is lowered, the evolution of fol-
fore aim at a computation df 4 as a function ofT and u. lows the exact renormalization-group equation
This involves a complicated functional integral over fluctua-
tions(8). We proceed by a stepwise solution by introducing a o Lo o] =£Tr((a RIT@+R)™ Y. (22
cutoff k for the fluctuations such that only fluctuations with kL@ @ller ™5 KA K W
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The functional differential equatiori22) can only be 0.1 . T T . T T
solved approximately by truncating the most general func-
tional form of the effective average action. For a truncation  0.09
scheme, we choose a derivative expansion

0.08 .
. Bdr 3 . K
Dde®el= | 5 | dXUp)Te™ () 0.07 |
J 1 i
x 2m——ZkV2)<p(T,x)+ YY) (V) . 0.06
or 4
0.05 1 1 1 1 1 1
(23 0 2 4 6 -8 -0 -12 -4
We consider an arbitrary dependence of the effective poten Ink/A

tial Uy(p) on the invarianp(,x) = ¢* (7,X) ¢(7,X). The de-
rivative terms (“kinetic terms”) are multiplied by wave-
function renormalizationg, and Y,. The momentum and
field dependencies dof, and Y, are expected to be weak
and therefore neglected for the computation of ground-stat
properties at this stage. For the calculation of the excitatiominimum, this retains more information about the influence
spectrum, these should turn out to be important and thuef regions of the effective potential away from the minimum.
should be included in future calculations. The resulting system of coupled ordinary differential equa-
We obtain evolution equations for the effective potentialtions was solved by an adaptive-stepsize Runge-Kutta inte-
and its derivatives by expanding the renormalization-grouggrator, where the momentum integrals were also evaluated
equation(22) around a constant background field and takingnumerically at each step.
the appropriate derivatives with respectgoln particular, The generic evolution ol,(p) is discussed in detail
we will use the evolution equation for the first derivative of €/sewheré. In short, one observes that the minimum of

the effective potentiall| = dU,/dp, which is obtained as ~ Yk(p) moves towards zero, but converges to a finite value
for the superfluid phase withJ}(po)=0. Furthermore,

FIG. 2. Flow of the location of the minimum of the dimension-
less effective potentiali (p) close to the critical temperaturd {
=2.172 K,|T—T¢~10"7 K). One observes the approximate fixed
Boint in the range I{A)~—4 to —10.

1[ d%q " Uk(p) is_ found to I_evel out in the regiop<p0_ in accor-
Uy(p)=— —f —(3tRk(Q))( K dance with the requirement that the true effective potential at
2) (2m)® [Z@?+UL+R(q)]? k=0 must be a convex function pf|. For the nonsuperfluid
phase, on the other hand, the minimumwy is at pg=0
3Ug+2U p+ Y, with U{>0.
+ [Z,G2+ Yip2+ U, +2U] p+Ri(q) 2 ' The finite number of sampling points is a possible source

of numerical inaccuracies, especially in the approach of the
(24)  nonanalyticity apg in the superfluid phase and at the bound-
. . . . ary p=0 in the nonsuperfluid phase. But since changing the
Evolution equations o, and Yy are obtained by taking nurr’:ber of sampling points does not substantially affect the
further appropriate expansions of Hg2).™ _ results and since the critical exponents are calculated with
~ The solution ofUy for k—0 is directly related to inten-  pigh accuracy as seen later, we do not expect these numerical
sive thermodynamic quantities as pressbyenergy density  sources to be major contributions to the errors of the results.

€, or particle densityr. Denoting byU(T, ) the value of The critical line separating the superfluid and nonsuper-
Uk—o at its minimum, one finds the relations fluid phases corresponds to a “fixed-point” or “scaling” so-
lution of the evolution equation in the dimensionless vari-
P=—TUeq n:_Taueq' e:—TzaUean,un. ables~p=Zkk*1P and u(p)=k 3Uy(p). It is given by
I aT (25 akuk(p)|p=0. Figure 2 shows an example of the flow of the

location x of the minimum ofu,(p) for two different tem-
Therefore Ug(T,u) contains the information about the peratures above and below the critical temperature. We see
equation of state. Furthermore, the correlation length is enthat « stays close to the fixed-point solution for several or-
coded in the derivatives 0fl,_o(p) at the minimum. We ders of magnitude ok. Above the critical temperature, it
therefore aim for a solution of the flow equatié@4) (or a  finally runs towards the symmetric phase where the mini-
similar equation folU,) for k—0. mum of the effective potential is at zero. Below the critical
This is obtained numerically by discretizinggand using ~€mperature, the minimum eventually runs off in the other
discrete approximations for the derivatives ofU,. As direction leading to a finite expectation value of the field and
Uu(p) remains fairly smooth throughout the evolution, atherefore to the case of spontaneously broken symmetry.

relatively small number of sampling points suffice to give a
good approximation of the shape bf,. The results pre-

sented in Sec. VI were obtained with 20 sampling points in Since our cutoff acts only on the=0 Matsubara fre-
space. In contrast to a Taylor expansionlf around its  quency, the “initial value” ofl", atk= A has to be computed

V. DIMENSIONAL REDUCTION
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as an integral over the#0 frequencies. This procedure is P,=Z 0%+ Y2+ U(p)+2pU"(p) + Re(Nn,q).
known asdimensional reductionlt adds to the classical po- (31)
tential

To account for then dependence of the propagators, we dis-
(26) tinguish the propagators of the zeroth Matsubara frequency

[with R,(n,q) # 0] by writing P,. andP,, .

a correction. The crudest approach would compute this in g 10 OPtain the propagator of the Goldstone mode, we fur-
one-loop approximation. In order to get a little more accy-thermore need to take the derivative of the resulting expres-

. A i (m) i
rate, we choose, instead, a description in terms of a standagion for J% _, with respect tom_, _q. We neglect two-

Schwinger-Dyson equation. This takes the leading mas¥0P graphs and explicitly evaluate the sums over Matsubara
renormalization into account. The Schwinger-Dyson equafréquencies stemming from th&s/ 5 term in Eq.(30). This

tion is obtained by a one-loop calculation of the inverse fullyields (for vanishing momentum and zero Matsubara fre-
propagator of the Goldstone mode, with renormalized vertiuency
ces given by Eq(23). It yields a self-consistent equation,

which we solve numerically at discretized pointspirspace 1 8T

~ 1-
UA(p)=—p+ 5 0(0)p?

for U’(p) while keeping the wave-function renormalizations v/ s 4T n—q 7=04=0n=0
and U"(p) fixed at their original values. This procedure is ’ ’
justified a posterioriby the observation that the effect of the 1683
Schwinger-Dyson equation is nearly a constant shift of v/ Sm_p
! »—Alz=0g=0n=0
U’'(p) for all p.
The Schwinger-Dyson equation is obtained in the follow- - 1 (A o n
ing way. We decompose the field into its real and imagi- =—ut+v(0)p+ FJ daof(P,P,) "t
nary partse=(m+io)/\2 and write the truncatiof23) as 0
pdr [, p X[[0(0)+2v(q)]P,+v(0)P .~ 4pU}(p)v(p)]
F[Tr,a]:fo EJ d X[U(p)+2|m-775_0' ﬁ thﬁ —
L L +1fAdq24mC°4mV”" 1
+SZUVmHH (V)24 ZY (V)2 (2D) an2)o 09 PP, P.P,

The inverse full propagator of the Goldstone mode is then X[[0(0)+2v(q)]P,+0v(0)P,—4pU"(p)v(p)].
given by 32)

1 OI'p\[m7, 0] . . .

ATl =Z,q%+U}\(p). (28) By equating the right-hand sides of Eq28) and (32), we

V 810 g0 —n,—ql .o obtain the Schwinger-Dyson equation, which we solve nu-
In order to calculate this propagator from the actiad), we ~ Merically for Uj (p) with Uy (p)=v(0) on a discrete set of
use the identity p values. This yields the initial condition for the evolution of

Ui(p).
1) A similar procedure could be used for a determination of
OZJ' DmDa 67anex 8ol Z,(p) and Y, (p) from the Schwinger-Dyson equation at

nonzerog?. We omit here the fluctuation effects for the
(m) () wave-function renormalizgtion and use Fhe ‘_‘(_:Ias_sical’i val-
+% (30 —q" Mgt I50 " Tna) [ (29 uesZ,=1, Y,=0. We believe that this simplification gives
' a sizeable contribution to the error in the computation of
whereJ(™ andJ(®) are source terms far ando. This leads  nonuniversal quantities presented in Sec. VI.
us to We are aware that the use of the Schwinger-Dyson equa-
tion becomes problematic for low. In this region, one
oS would prefer to use an infrared regulator that drops the Kro-
0= 0T q

necker delta in Eq20). As a result, also the contributions of
(30) then#0 Matsubara frequencies to the Schwinger-Dyson in-

tegral would be suppressed by the cutaff and all modes
We can now substitute the derivativesWfby the renormal-  with g?<A? could then be dealt with by the
ized vertices that we obtain from the truncati@3), e.g., by  renormalization-group procedufen contrast to the present
using the fact that'® is the inverse of the full propagator version where this holds only fan=0). One would thus
W), We denote the propagators of the Goldstone and thexpect a more reliable treatment. Modifying the cut@o)

PAICORPR ol L

Jd J ‘| n (77) ew[J(W)’J(U)].

radial modes by . andP,;: by droppingd, o results again in a simple form of the evo-
) , lution equation since the Matsubara sum can be evaluated
Pr=2Z°+U(p)+Ru(n,q), explicitly. We find
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3q TABLE I. Critical exponents for the superfluid phase transition
HU(p)= j —3[3kRk(Q)] of helium-4 apd comparison With values for ttD{Z_) universality
) class. The slight differences in the values obtained ifaaind y

above and below the critical temperature reflect numerical inaccu-

B Pi+P, B racies.
X% ﬁcothm\@w- P, (33

A numerical solution of this evolution equation, however,

Our results ~ Other approacies Experimental resulfs

shows instabilities, which we have not managed to overcome 0.6695 0.6709813)
so far. v 0.675 0.67F 0.67056)
0.667 0.672 0.67084)
VI. RESULTS
0.3455%
From the solution of the evolution equation, we can cal-g 0.359 0.348%
culate the quantities of interest for the phase transition to

superfluidity. 1.316

y 1.30%' 1.31%

A. Critical chemical potential 1.298 1.39

For a constant temperature of 2.172 K, which corresponds
to the experimental critical temperature under vapor-pressurg —— -~ 7
conditions, we can tune the chemical potential to obtain thegReferences 18-20 '
fixed-point solution. We thereby find a critical chemical po- '
tential u.= —6.7 K in good agreement with the experimen- 4
tal findings of Maynard?® where a value of around 7.4 K eForT>'|]:_cﬁ.h g .
has been extrapolated from the measurements of the veloci FroqjjT' -ordete expansion.
of the fourth sound in the superfluid phase. We emphasizglzcr)cr)m Iattci(.:e calculations
that theQ) shift in Eq.(7) is essential, as otherwise we would '

have obtained a value of about 12 K higher. This supports ) )
again our ansatz for the action for helium-4. exponents can therefore be compared to previous high-

precision estimates for this universality class. The excellent
correspondence with other, more demanding calculations and
experimental values shown in Table | demonstrates that our

By exploring the region around the critical temperature,truncation is reliable for the universal quantities. The scaling
we can compute the critical exponents 3, and y of the  requirement that and v, respectively, obtain the same val-
helium-4 system. They describe the divergence of the correses above and below the critical temperature is also well
lation length above and below the critical temperatwe  fulfilled.
the growing of the order parameter, i.e., the expectation
value of the field, below the critical temperaty®, and the
divergence of the susceptibility above and below the critical
temperaturgy). We present our results as a demonstration Sincedl'/d¢* =J, the minimum of the effective potential
that the flow equations can indeed be followed directly fromU,_q(pg) corresponds to the physical case of vanishing ex-
microphysics to macrophysics without encountering infraredernal sources for the stationary helium system. The pressure
problems. No resummations of series or other technicaP is given by the value of the effective potential at the mini-
tricks as used by other analytical methods are needed. mumpg, P=—TU,_q(pg). The minimum valudJ,[ po(k)]

It is well established that helium-4 at the lambda transi-can be followed by an evolution equation, which is obtained
tion is described by th®(2) universality class. The critical from Eq.(22). It is given by

“From summed perturbation series at six-loop order.

B. Critical exponents

C. Pressure

1 diq 1
(Uil po(k)]) = —f —[ﬁkRk(q)]( + p (34)
2J) (2m)® Z@*+R(@)  Zuq*+ Yipo(K) g+ 22U po(K) 1po(K) + Ri(a)
|
in the spontaneously broken regimey(k) #0] and by in the symmetric regimé¢pq(k)=0]. The starting value is
5 the classical minimun ,[ po(A)]=—2/[25(0)].
d°q IR(q) . : /
aJU(0)]= 5 5 , (35) We find that the solution of the flow equations does not
(2m)° Z,q°+ U, (0) + Ri(q) lead to a reliable estimate of the absolute value of the pres-
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180 T T T T T T T 0.01 N T T T T T
— 140 b p=—-68K" | 0.008 . T
g | . | | . . i
'g‘ 100 - . . i 0.006 [ - i
g | = —6.74K C po i . 1
0 . 0.004 . T
& 60 4
= L i
[al) L - - i .

.l uw=—-6.7K . | 0.002 | . 1

i 1 1 1 1 L I 0 i L 1 L | e salosaasa e aa .:
2.14 2.16 2.18 2.2 2.22 9 2.1 2.9 2.3

Temperature [K] Temperature [K]
FIG. 3. Temperature dependence of the pressure for three dif- £ 4. Magnitude squared of the order parameter of the super-
ferent values of the chemical potentjalcalculated from the evo-  fid phase obtained from the evolution E@Q4). The chemical

lution Eq. (24). (The value ofu=-6.74 K corresponds to the pniential is adapted so that the calculated pressure yields the vapor
chemical potential at the critical temperature under vapor PressUrressure corresponding to the temperature.

as obtained from the fixed-point solution.

sure. The main reason for this is a strong dependence on tH&e inverse full propagator is block diagonalrimndq with
UV cutoff, which is not well controlled by our method. For

example, the initial value dfl [ po(A)] should also receive ST @, 0*] T @, 0% ]

a correction from higher Matsubara frequencies, which we So* S 8¢ 8¢

do not calculate in our Schwinger-Dyson approach. This cor- #nq%®Pn.aq Snhoanena

rection will depend notably on the microphysical details ofr(kz)(n,q)z (37
the interaction and the choice of the UV cutoff. Fortunately, Pl @, ¢*] T\ e, 0*]

this is not the case for the temperature dependence of the
pressure, which is mainly governed by the momentum range
g’~2mT. We thus resort to normalizing the pressure at the
critical temperature, where is given by the fixed-point con- and contains fok=0 the information about the phonon en-
dition, and only calculate th& dependence oP. Figure 3  ergy spectrum for givem andT and arbitrary strength of the
shows the dependence of the pressure on the temperature fgteraction. The trace in E436) includes a summation over
three different values of the chemical potential. Since wemomenta and Matsubara frequencies. We calculate the eigen-
need to specify the chemical potential in our formalism whervalues of'(2, from the truncation23) and explicitly sum

we want to calculate the order parameter and the density &ver the Matsubara frequencies. This yiel@sthe rescaled
vapor pressure, we determingP,T) from this result and field variable

use the experimentally known vapor-pressure curve for
P(T).

5§D:,q5§otn,—q 5¢—n,—q5‘»ptn,—q

om 1 fA P.+P, (B
n=—npo+—| dgq? cotr(—\/PﬂPg),
B " gr2)o “1T B, M am

(38)

D. Order parameter

While the critical exponeng describes the growing of the
order parameter in th®(2) universality class, we can also whereP, andP, again denote the inverse propagators of the
calculate the order parameter for the helium system explicGoldstone and the radial modes as in Eg§1), but with
itly. It is given by the expectation value of the fiefd There-  R,_y(n,q)=0. The masseblj andU,+2U{p are taken at
fore, po(k=0) gives the magnitude squared of the expectap,, so that in the spontaneously broken phase we have
tion value of the field. In Fig. 4, we show the results for theué(po)zo and in the symmetric phasg,=0 and P
temperature dependence pp=po(k=0). The superfluid =p .

density is proportional tgo. The proportionality constant,  As in the calculation of the pressure, the calculations of
however, depends on the wave-function renormalizationshe density do not give reliable results for the absolute value
which is not accurately determined so far. of the density, which strongly depends on the UV cutoff and

is expected to get a sizeable contribution from three-particle

E. Density interactions. We observe that the momentum integral in Eq.
Finally, we compute the particle density as (38) is dominated by high momentg#~ A2 and is therefore
strongly affected by the choice of the cutoff. Furthermore,
1 t this implies that the precise momentum dependence of the
n==(> ala P b penaence
LA propagators? . and P, could also have a substantial influ-

ence on the value of the density. The temperature depen-
=i > Xk ox >:@+ iTr(F(Z) )1 (36) dence of the density, on the other hand, is dominated®y
V i Vinadnaiy oy TR k=0T ~2mT. We thus allow for an overall shift of the density and
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FIG. 5. Temperature dependence of the density. The density is
calculated for different temperatures around the critical pdiltéd
boxes and compared to measuremefgslid line). The chemical
potential is adapted so that the calculated pressure yields the vap
pressure corresponding to the temperature.

FIG. 6. Temperature dependence of the wave-function renormal-
ization Z (filled circles that would be needed in E438) to yield

e observed density. The dotted line displays a simple exponential
it to the data.

only calculate its temperature dependence. The results are another reason why more precision on the wave-function
shown in Fig. 5. They reproduce the qualitative picture of therenormalizations will be needed concerns the calculation of
density close to the phase transition. The pedk.as clearly  the excitation spectrum and the sound velocity. This requires
visible as well as the slightly negative thermal-expansioran understanding of thg? dependence of the inverse full

coefficient forT<T. , _ . propagatod’® and thus strongly depends @{q?,T) and
The fact that our calculations deviate substantially abovey (g2 T).

the critical temperature is due to the crude treatment of the
wave-function renormalizatioZ. In the present approach,
we have use@ (g%, T)=Z,=1 andY(g?T)=Y,=0. For a
more reliable treatment, the wave-function renormalizations
Z—o and Yy_q in P_ and P, should be replaced by
momentum-dependent functioZ§q?,T), Y(g?,T). We are
aware that the simplificationsZ(g?T)=2Z,=1 and

VII. CONCLUSIONS

We have computed thermodynamic properties of a
strongly interacting system near a second-order phase transi-
tion from “first principles.” Starting from the microphysical
Y(q?,T)=Y,=0 are less appropriate for the temperature delnteractions, we have determined the macroscopic thermody-

pendence of the density, for which the integral is dominatetﬂa.mic potential for h.elium-4 hear the superfluid phage tran-
by g?~2mT. In the vicinity of the phase transition, the con- sition. Our method is based on an exact renormalization-

tribution to dn/d T from the fluctuation integrai38) scales ~9"°YP equation. The critical exponents obtained by this
roughly<Z 32, ReplacingZ,, =1 by Z,., k2=2mT leads to approach agree well with more elaborate state-of-the-art cal-
T!

) culations and measurements. Our most robust nonuniversal

a less pronounced temperature dependendg i>1. Fur-  reqit, the critical chemical potential, is also in good agree-
thermore, forT nearT., critical fluctuations influence the ment with experiment. It supports our computation of the
behavior ofZ and Y at low g?. We believe that our crude microphysical action by which helium-4 is described in the
treatment of the wave-function renormalization constitutedanguage of functional integrals. This action contains an ad-
the most important source of error in determining the temditive shift of the chemical potential that has not been con-
perature dependence of the density. We nevertheless see tlsdered so far.
we obtain qualitatively correct results, which are stable For quantitatively convincing results of the equation of
against shifting the UV cutoff. state, one needs to improve the treatment of the UV cutoff

Since the temperature dependence of the density is notas well as additional effects of higher Matsubara frequencies
universal critical quantity, an understanding of the momenbeyond those that we have taken into account in the
tum and temperature dependencieZ0d?,T) is mandatory ~ Schwinger-Dyson formalism. A more accurate treatment of
for a quantitative prediction. This is illustrated by Fig. 6 the wave-function renormalization is required as well. Quali-
where we show the temperature dependence of a momentunatively, though, we reproduce important features of the
independenZ(T) that would be needed for a reproduction of equation of state such as the density peak at the phase tran-
the experimental datdThe latter may be viewed as an ef- sition.
fective T-dependent mean value (g2, T), which yields the We emphasize that we treat here a temperature range
sameq? integral(38) as the truez(g?,T).] This curve seems where collective effects and critical behavior are crucial and
reasonable, including the modest feature nearUsing the  where many previous methods are plagued by severe infrared
dotted curve of Fig. 6 as an approximation to th&{d) problems. Despite certain quantitative shortcomings, this
values still leads to considerable deviations from the obwork may be viewed as a demonstration thhtinitio com-
served density in the immediate vicinity @f, demonstrat- putations of the equation of state become possible with mod-
ing the high precision to whic& has to be known. ern renormalization-group techniques.

134506-8



EQUATION OF STATE FOR HELIUM-4 FROM MICROPHYSICS

IR. A. Aziz, M. J. Slaman, A. Koide, and A. R. Allnatt, Mol. Phys.
77, 321(1992.

2F. London,SuperfluidsWiley, New York, 1954, \Vol. 2.

3R. J. DonnellyExperimental SuperfluiditgUniversity of Chicago
Press, Chicago, 1967

4J. Wilks and D. S. BettsAn Introduction to Liquid HeliuntClar-
endon Press, Oxford, 1987

5C. Wetterich, Phys. Lett. B01, 90 (1993.

5T. Gollisch and C. Wetterich, Phys. Rev. L&, 1 (2001).

7K. G. Wilson, Phys. Rev. Bl, 3184(1971); K. G. Wilson and |I.
G. Kogut, Phys. Repl2, 75(1974.

8J. Berges, N. Tetradis, and C. Wetterich, hep-ph/0005%t8@ub-
lished.

%M. Bijlsma and H. T. C. Stoof, Phys. Rev. 34, 5085(1996.

PHYSICAL REVIEW B5 134506

12p. Casher, D. Lufieand M. Revzen, J. Math. Phy8, 1312
(1968.

13E. M. Lifshitz and L. P. PitaevskiiCourse of Theoretical Physics
(Pergamon Press, Oxford, 198%ol. 9.

14N. Tetradis and C. Wetterich, Nucl. Phys.422, 541 (1994.

153, Maynard, Phys. Rev. B4, 3868(1976.

163, Zinn-Justin,Quantum Field Theory and Critical Phenomena
(Oxford Science Publications, Oxford, 1989

17|, Kondor and T. Temesvari, J. Phy&rancé Lett. 39, L99
(1978.

183 A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E.
Israelsson, Phys. Rev. Left6, 944 (1996.

19, s. Goldner, N. Mulders, and G. Ahlers, J. Low Temp. PI9g;.
131(1993.

10C. castellani, C. Di Castro, F. Pistolesi, and G. C. Strinati, Phys?°D. R. Swanson, T. C. P. Chui, and J. A. Lipa, Phys. ReviB

Rev. Lett.78, 1612(1997).
A, C. Olinto, Phys. Rev. B37, 4996(1988.

9043(1992; D. Marek, J. A. Lipa, and D. Philipshid. 38, 4465
(1988.

134506-9



