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Equation of state for helium-4 from microphysics
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We compute the free energy of helium-4 near the lambda transition based on an exact renormalization-group
equation. An approximate solution permits the determination of universal and nonuniversal thermodynamic
properties starting from the microphysics of the two-particle interactions. The method does not suffer from
infrared divergences. The critical chemical potential agrees with experiment. This supports a specific formu-
lation of the functional integral that we have proposed recently. Our results for the equation of state reproduce
the observed qualitative behavior. Despite certain quantitative shortcomings of our approximation, this dem-
onstrates thatab initio calculations for collective phenomena become possible by modern renormalization-
group methods.
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I. INTRODUCTION

When we regard a multiparticle system such as helium
we can choose between two possible points of view. We
zoom in on the details of the interactions, focusing on onl
few particles, and in a first approach we might choose
study how the interactions of just two particles can be
scribed. This is typically investigated by scattering expe
ments, and a quite precise picture of the two-particle in
action for helium-4 exists.1 On the other hand, we can als
take a broader view and turn to the thermodynamic prop
ties of many particles where properties such as pressure,
perature, and superfluidity arise.2–4

These two pictures are, of course, connected to each o
as the thermodynamic properties are large scale effects o
~local! microscopic interactions. Yet for helium-4 in the in
teresting region around the superfluid phase transition
complete mathematical description, which makes this c
nection explicit, is still lacking, to our best knowledge.
general problem in the calculation of thermodynamic pro
erties is the occurrance of infrared divergences. Here,
present an approach that is free of those divergences.
based upon an exact renormalization-group equation.5

The goal of this work is threefold. First of all, we dem
onstrate how nonuniversal properties of thermodyna
systems can be calculated by means of an ex
renormalization-group equation. Second, we present res
for the critical chemical potential and the equation of st
for helium-4 obtained merely from the microscopic intera
tions. And third, we show the necessity of a shift of t
chemical potential in the action, which arises from the ma
ematical manipulations of the functional integral and b
comes important in the calculation of the phonon spectr
and the critical chemical potential. We have reported on
appearance of this shift earlier6 and now show its effect in
application.

The renormalization group is well suited for the treatme
of the superfluid phase transition. While a perturbative
proach is plagued by infrared divergences, the renormal
tion group naturally circumvents these difficulties. It al
presents an intuitive connection between the microscopic
0163-1829/2002/65~13!/134506~9!/$20.00 65 1345
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the macroscopic pictures. It starts with just the microsco
interactions. After integrating out the single-particle degre
of freedom consecutively from the effective ultraviolet~UV!
cutoff at large momentum down to zero momentum, a co
plete thermodynamic description of the system is obtaine

This basic idea7 is implemented in our approach by
functional differential equation that represents the lower
of an infrared cutoff. There is, in principle, no restriction o
the relative interaction strength or the density of the syst
as in most perturbative approaches. Details of the met
can be found elsewhere.8

A similar approach to the calculation of nonunivers
properties for Bose condensates by renormalizati
group methods was taken by Bijlsma and Stoof, restric
to low-density gases.9 Another recent application o
renormalization-group methods to superfluid helium co
bined with the exploitation of the underlying symmetry a
related Ward identity has successfully treated the infra
divergences that occur in the computation of low-lyin
excitations.10

II. THE ACTION FOR HELIUM-4

We describe helium-4 by the many-body bosonic Ham
tonian operator

H5(
q

S q2

2m
2m Daq

†aq1
1

2 (
q1 ,q2 ,q

aq11q
† aq22q

† v~q!aq2
aq1

.

~1!

The massm of the helium atom is 3.73 GeV,m is the chemi-
cal potential, andv(q) the two-particle interaction potentia

Such a description is clearly not valid below the atom
scale, and we therefore assume a UV momentum cutoff p
portional to the inverse atomic length scale given by
atomic diameters: L5(2p)/s, q2,L2. ~In all formulas,
units are chosen such that\5c5kB51.! We choose to de-
scribe the interaction by a simple Lennard-Jones potenti

v~r !54eS s12

r 12
2

s6

r 6 D ~2!
©2002 The American Physical Society06-1
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with the maximum energy of attractione510.22 K and
s52.556 Å. This fits the measured interaction potential v
accurately.1 For the definition of the interaction in the mo
mentum domain, we identify the atomic diameters with the
scattering length11 and cut off the potential at small distanc
while fixing v(q50)5(4ps)/(Vm) as required by low-
energy scattering theory. Here,V is the system’s volume
which we will let eventually approach infinity. The Fourie
transform of the two-particle potential thus derived is sho
in Fig. 1.

The actionS@x,x* # for helium-4, which is a functiona
depending on the four-dimensional classical complex fieldx,
is defined via the grand canonical partition function

Tr e2bH5E DxDx* e2S[x,x* ] ~3!

with b51/T denoting the inverse temperature. As we ha
shown earlier,6 great care has to be taken in constructing
action, and for the Hamiltonian operator~1!, we have ob-
tained a perhaps unexpected shiftV for the chemical poten-
tial m in the action. One finds~up to a constant!

S@x,x* #5E
0

b

dtH(
q

xq* ~t!S ]

]t
1

q2

2m
2m2V Dxq~t!

1
1

2 (
q1 ,q2 ,q

xq11q* ~t!xq22q* ~t!

3v~q!xq2
~t!xq1

~t!J ~4!

with

V5
1

2 (
q

@v~q!1v~0!#. ~5!

All momenta are restricted by the UV cutoffq2,L2.
It is convenient to express the field as a sum over M

subara frequenciesvn52pn/b,

xq~t!5 (
n52`

`

eivntxn,q , ~6!

FIG. 1. Fourier transform of the two-particle interaction f
helium-4.
13450
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such that

S@x,x* #5(
n,q

bxn,q* S ivn1
q2

2m
2m2V Dxn,q

1
b

2 (
n1 , . . . ,n4
q1 ,q2 ,q

xn1 ,q11q* xn2 ,q22q*

3xn3 ,q2
xn4 ,q1

v~q!dn11n2 ,n31n4
. ~7!

This action differs in the appearance ofV from a
functional-integral approach proposed earlier within
coherent-state ansatz, where a complete set of eigenstat
the annihilation operators is used for the conversion of
partition function to a functional integral.12 In contrast, Eq.
~7! is obtained by transforming the creation and annihilat
operators in the Hamiltonian~1! to location and momentum
operators before the conversion to a functional integral. T
allows us to choose an operator ordering which avoids
controllable contributions from next-to-leading-order term
in the discretization parameter. The correctness of our
proach has been tested by numerical calculations in quan
mechanics.6

III. PHONON SPECTRUM

From the action~7!, we can already calculate the phono
velocity for a weakly coupled Bose condensate atT50. Al-
though this can also be obtained by a Bogoliubov trans
mation of the Hamiltonian operator~1!, we sketch the calcu-
lation as it shows howV cancels a corresponding term
evolving from the one-loop correction. In this way,V acts as
a counterterm though it has naturally emerged from the c
struction of the functional integral.

The generating functional of the connected Green fu
tions W@J,J* # is defined by

eW[J,J* ]5E DxDx* expH 2S@x,x* #

1(
n,q

~Jn,q* xn,q1Jn,qxn,q* !J , ~8!

and the generating functional of the 1PI Green functions by
the Legendre transform

G@w,w* #52 ln W@J,J* #1(
n,q

~Jn,q* wn,q1Jn,qwn,q* !.

~9!

To calculate the phonon spectrum, we need the zeros of
inverse full propagatorG (2). We restrict ourselves to the cas
of a static and homogeneous condensatew̄n,q5wdn,0dq,0 .
Considering only low-momentum excitations, we can a
proximate the interaction potentialv(q) by v(0). Thetree-
level approximation yields

G0@w,w* #5S@w,w* # ~10!

and therefore~for fixed n andq)
6-2



of

se

nd

re

a
g
th

e

rb-

ce

n-
toff

e
-

d

o
for

ared
or

EQUATION OF STATE FOR HELIUM-4 FROM MICROPHYSICS PHYSICAL REVIEW B65 134506
G0
(2)5S d2S@w,w* #

dwn,q* dwn,q

d2S@w,w* #

dw2n,2qdwn,q

d2S@w,w* #

dwn,q* dw2n,2q*

d2S@w,w* #

dw2n,2qdw2n,2q*
D

5bS ivn1q̃ v~0!w* 2

v~0!w2
2 ivn1q̃D , ~11!

where

q̃5q2/~2m!2m2V12v~0!uwu2. ~12!

The one-loop correction is obtained as

G1@w,w* #5
1

2
Tr ln G0

(2) ~13!

with the trace including a sum ofn and momenta. Neglecting
terms ofO@v(0)2#, we obtain in the limitb→` the simple
expression for the leading term,

G1
(2)5S bV 0

0 bV D . ~14!

This cancels the corresponding term inq̃ appearing in Eq.
~11!.

For G0
(2)1G1

(2) , we can now compute the eigenvalues:

l1,25bS q2

2m
2m12v~0!uwu26A~ ivn!21v~0!2uwu4D .

~15!

The phonon energy spectrum is determined by the zerosl
for complex vn @with the first-order approximation13 m
5v(0)uwu2#:

E~q!5 ivn~q!5uqu•A1

m
v~0!uwu21O~q2! ~16!

with the correct phonon velocity of a weakly coupled Bo
condensate atT50.13

IV. FLOW EQUATION

The physical situation of vanishing sources correspo
to an extremum ofG sincedG/dw5J* . The value ofG at
the extremumGeq5G@weq,weq* # is directly related to the free
energyF by

F5TGeq1mN. ~17!

For a computation of thermodynamic quantities, we the
fore aim at a computation ofGeq as a function ofT andm.
This involves a complicated functional integral over fluctu
tions~8!. We proceed by a stepwise solution by introducin
cutoff k for the fluctuations such that only fluctuations wi
13450
s

-

-
a

momentaq2.k2 are included in the functional integral. Th
variation of the effective action withk is described by an
exact flow equation.

For notational simplicity, we rescale the fields by abso
ing a factor ofAb/(2mV) into the field variable and define
m̃52m(m1V) andṽ(q)54m2Vv(q)/b. For the action this
yields

S@x,x* #5V(
n,q

xn,q* ~2imvn1q22m̃ !xn,q

1
V

2 (
n1 , . . . ,n4
q1 ,q2 ,q

xn1 ,q11q* xn2 ,q22q*

3xn3 ,q2
xn4 ,q1

ṽ~q!dn11n2 ,n31n4
. ~18!

In the grand canonical partition function, we add sour
terms J and an infrared regulatorRk(n,q) and define the
functionalWk@J,J* # as the generating functional of the co
nected Green functions in the presence of an infrared cu
k,

eWk[J,J* ]5E DxDx* expH 2S@x,x* #

1(
n,q

~Jn,q* xn,q1Jn,qxn,q* 2Vxn,q* Rk~n,q!xn,q!J .

~19!

For the infrared regulator, we choose

Rk~n,q!5
Zkq

2

expS q2

k2D 21

dn,0 . ~20!

Here,Zk is a wave-function renormalization, which will b
defined below in Eq.~23!. We note that this particular regu
lator cuts off the momentum modes withq2,k2 only for the
n50 Matsubara frequency. ThenÞ0 modes are not affecte
and contribute fully in the functional integral~19!. For large
enoughT, the integration of thenÞ0 frequencies poses n
problem since temperature acts as an infrared regulator
these modes. Nevertheless, a future extension of the infr
cutoff to the nÞ0 Matsubara modes may be welcome f
low T.

The effective average action is defined as

Gk@w,w* #52Wk1(
n,q

@Jn,q* wn,q1Jn,qwn,q*

2Vwn,q* Rk~n,q!wn,q#. ~21!

As the infrared cutoffk is lowered, the evolution ofGk fol-
lows the exact renormalization-group equation8

]kGk@w* ,w#uw* ,w5
1

2
Tr~~]kRk!~Gk

(2)1Rk!
21!. ~22!
6-3
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The functional differential equation~22! can only be
solved approximately by truncating the most general fu
tional form of the effective average action. For a truncat
scheme, we choose a derivative expansion

Gk@w* ,w#5E
0

bdt

b E d3xFUk~r!1w* ~t,x!

3S 2m
]

]t
2Zk¹

2Dw~t,x!1
1

4
Yk~¹r!~¹r!G .

~23!

We consider an arbitrary dependence of the effective po
tial Uk(r) on the invariantr(t,x)5w* (t,x)w(t,x). The de-
rivative terms ~‘‘kinetic terms’’! are multiplied by wave-
function renormalizationsZk and Yk . The momentum and
field dependencies ofZk and Yk are expected to be weak8

and therefore neglected for the computation of ground-s
properties at this stage. For the calculation of the excita
spectrum, these should turn out to be important and t
should be included in future calculations.

We obtain evolution equations for the effective potent
and its derivatives by expanding the renormalization-gro
equation~22! around a constant background field and tak
the appropriate derivatives with respect tor. In particular,
we will use the evolution equation for the first derivative
the effective potentialUk85]Uk /]r, which is obtained as

] tUk8~r!52
1

2E d3q

~2p!3
~] tRk~q!!S Uk9

@Zkq
21Uk81Rk~q!#2

1
3Uk912Uk-r1Ykq

2

@Zkq
21Ykrq21Uk812Uk9r1Rk~q!#2D .

~24!

Evolution equations forZk and Yk are obtained by taking
further appropriate expansions of Eq.~22!.8,14

The solution ofUk for k→0 is directly related to inten-
sive thermodynamic quantities as pressureP, energy density
e, or particle densityn. Denoting byUeq(T,m) the value of
Uk50 at its minimum, one finds the relations

P52TUeq, n52T
]Ueq

]m
, e52T2

]Ueq

]T
1mn.

~25!

Therefore Ueq(T,m) contains the information about th
equation of state. Furthermore, the correlation length is
coded in the derivatives ofUk50(r) at the minimum. We
therefore aim for a solution of the flow equation~24! ~or a
similar equation forUk) for k→0.

This is obtained numerically by discretizingr and using
discrete approximations for ther derivatives of Uk . As
Uk(r) remains fairly smooth throughout the evolution,
relatively small number of sampling points suffice to give
good approximation of the shape ofUk . The results pre-
sented in Sec. VI were obtained with 20 sampling points ir
space. In contrast to a Taylor expansion ofUk around its
13450
-
n

n-

te
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minimum, this retains more information about the influen
of regions of the effective potential away from the minimum
The resulting system of coupled ordinary differential equ
tions was solved by an adaptive-stepsize Runge-Kutta i
grator, where the momentum integrals were also evalua
numerically at each step.

The generic evolution ofUk(r) is discussed in detai
elsewhere.8 In short, one observes that the minimum
Uk(r) moves towards zero, but converges to a finite valuer0
for the superfluid phase withU08(r0)50. Furthermore,
Uk(r) is found to level out in the regionr,r0 in accor-
dance with the requirement that the true effective potentia
k50 must be a convex function ofuwu. For the nonsuperfluid
phase, on the other hand, the minimum ofU0 is at r050
with U08.0.

The finite number of sampling points is a possible sou
of numerical inaccuracies, especially in the approach of
nonanalyticity atr0 in the superfluid phase and at the boun
ary r50 in the nonsuperfluid phase. But since changing
number of sampling points does not substantially affect
results and since the critical exponents are calculated w
high accuracy as seen later, we do not expect these nume
sources to be major contributions to the errors of the resu

The critical line separating the superfluid and nonsup
fluid phases corresponds to a ‘‘fixed-point’’ or ‘‘scaling’’ so
lution of the evolution equation in the dimensionless va
ables r̃5Zkk

21r and uk( r̃)5k23Uk( r̃). It is given by
]kuk( r̃)u r̃50. Figure 2 shows an example of the flow of th
location k of the minimum ofuk( r̃) for two different tem-
peratures above and below the critical temperature. We
that k stays close to the fixed-point solution for several o
ders of magnitude ofk. Above the critical temperature, i
finally runs towards the symmetric phase where the m
mum of the effective potential is at zero. Below the critic
temperature, the minimum eventually runs off in the oth
direction leading to a finite expectation value of the field a
therefore to the case of spontaneously broken symmetry

V. DIMENSIONAL REDUCTION

Since our cutoff acts only on then50 Matsubara fre-
quency, the ‘‘initial value’’ ofGk at k5L has to be computed

FIG. 2. Flow of the location of the minimum of the dimensio

less effective potentialuk( r̃) close to the critical temperature (Tc

52.172 K, uT2Tcu'1027 K). One observes the approximate fixe
point in the range ln(k/L)'24 to 210.
6-4
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EQUATION OF STATE FOR HELIUM-4 FROM MICROPHYSICS PHYSICAL REVIEW B65 134506
as an integral over thenÞ0 frequencies. This procedure
known asdimensional reduction. It adds to the classical po
tential

UL
(0)~r!52m̃r1

1

2
ṽ~0!r2 ~26!

a correction. The crudest approach would compute this
one-loop approximation. In order to get a little more acc
rate, we choose, instead, a description in terms of a stan
Schwinger-Dyson equation. This takes the leading m
renormalization into account. The Schwinger-Dyson eq
tion is obtained by a one-loop calculation of the inverse f
propagator of the Goldstone mode, with renormalized ve
ces given by Eq.~23!. It yields a self-consistent equation
which we solve numerically at discretized points inr space
for U8(r) while keeping the wave-function renormalizatio
and U9(r) fixed at their original values. This procedure
justifieda posterioriby the observation that the effect of th
Schwinger-Dyson equation is nearly a constant shift
U8(r) for all r.

The Schwinger-Dyson equation is obtained in the follo
ing way. We decompose the fieldw into its real and imagi-
nary partsw5(p1 is)/A2 and write the truncation~23! as

G@p,s#5E
0

bdt

b E d3xH U~r!12im•p
]

]t
s

1
1

2
Z@~¹p!21~¹s!2#1

1

4
Y~¹r!2J . ~27!

The inverse full propagator of the Goldstone mode is th
given by

1

V

dGL@p,s#

dpn,qdp2n,2q
U

p50

5ZLq21UL8 ~r!. ~28!

In order to calculate this propagator from the action~18!, we
use the identity

05E DpDs
d

dpn,q
expH 2S@p,s#

1(
n,q

~J2n,2q
(p)

•pn,q1J2n,2q
(s)

•sn,q!J , ~29!

whereJ(p) andJ(s) are source terms forp ands. This leads
us to

05S 2
dS

dpn,q
F ]

]J(p)
,

]

]J(s)G1J2n,2q
(p) D eW[J(p),J(s)] .

~30!

We can now substitute the derivatives ofW by the renormal-
ized vertices that we obtain from the truncation~23!, e.g., by
using the fact thatG (2) is the inverse of the full propagato
W(2). We denote the propagators of the Goldstone and
radial modes byPp andPs :

Pp5Zkq
21Uk8~r!1Rk~n,q!,
13450
a
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rd

ss
-
l
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f
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n

e

Ps5Zkq
21Ykrq21Uk8~r!12rU9~r!1Rk~n,q!.

~31!

To account for then dependence of the propagators, we d
tinguish the propagators of the zeroth Matsubara freque
@with Rk(n,q)Þ0# by writing P̂p and P̂s .

To obtain the propagator of the Goldstone mode, we f
thermore need to take the derivative of the resulting exp
sion for J2n,2q

(p) with respect top2n,2q . We neglect two-
loop graphs and explicitly evaluate the sums over Matsub
frequencies stemming from thedS/dp term in Eq.~30!. This
yields ~for vanishing momentum and zero Matsubara f
quency!

1

V

d2GL

dpn,qdp2n,2q
Up50,q50,n50

5
1

V

dJ2n,2q

dp2n,2q
U

p50,q50,n50

52m̃1 ṽ~0!r1
1

4p2E0

L

dqq2~ P̂pP̂s!21

3@@ ṽ~0!12ṽ~q!# P̂s1 ṽ~0!P̂p24rUL9 ~r!ṽ~r!#

1
1

4p2E0

L

dqq2S b

4m
coth

b

4m
APpPs

APpPs

2
1

PpPs

D
3@@ ṽ~0!12ṽ~q!#Ps1 ṽ~0!Pp24rUL9 ~r!ṽ~r!#.

~32!

By equating the right-hand sides of Eqs.~28! and ~32!, we
obtain the Schwinger-Dyson equation, which we solve n
merically for UL8 (r) with UL9 (r)5 ṽ(0) on a discrete set o
r values. This yields the initial condition for the evolution o
Uk8(r).

A similar procedure could be used for a determination
ZL(r) and YL(r) from the Schwinger-Dyson equation a
nonzeroq2. We omit here the fluctuation effects for th
wave-function renormalization and use the ‘‘classical’’ va
uesZL51, YL50. We believe that this simplification give
a sizeable contribution to the error in the computation
nonuniversal quantities presented in Sec. VI.

We are aware that the use of the Schwinger-Dyson eq
tion becomes problematic for lowT. In this region, one
would prefer to use an infrared regulator that drops the K
necker delta in Eq.~20!. As a result, also the contributions o
the nÞ0 Matsubara frequencies to the Schwinger-Dyson
tegral would be suppressed by the cutoffL, and all modes
with q2,L2 could then be dealt with by the
renormalization-group procedure~in contrast to the presen
version where this holds only forn50). One would thus
expect a more reliable treatment. Modifying the cutoff~20!
by droppingdn,0 results again in a simple form of the evo
lution equation since the Matsubara sum can be evalu
explicitly. We find
6-5
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]kUk~r!5E d3q

~2p!3
@]kRk~q!#

3
b

8m

Pp1Ps

APp•Ps

coth
b

4m
APp•Ps. ~33!

A numerical solution of this evolution equation, howev
shows instabilities, which we have not managed to overco
so far.

VI. RESULTS

From the solution of the evolution equation, we can c
culate the quantities of interest for the phase transition
superfluidity.

A. Critical chemical potential

For a constant temperature of 2.172 K, which correspo
to the experimental critical temperature under vapor-pres
conditions, we can tune the chemical potential to obtain
fixed-point solution. We thereby find a critical chemical p
tential mc526.7 K in good agreement with the experime
tal findings of Maynard,15 where a value of around27.4 K
has been extrapolated from the measurements of the vel
of the fourth sound in the superfluid phase. We empha
that theV shift in Eq.~7! is essential, as otherwise we wou
have obtained a value of about 12 K higher. This suppo
again our ansatz for the action for helium-4.

B. Critical exponents

By exploring the region around the critical temperatu
we can compute the critical exponentsn, b, and g of the
helium-4 system. They describe the divergence of the co
lation length above and below the critical temperature~n!,
the growing of the order parameter, i.e., the expecta
value of the field, below the critical temperature~b!, and the
divergence of the susceptibility above and below the criti
temperature~g!. We present our results as a demonstrat
that the flow equations can indeed be followed directly fro
microphysics to macrophysics without encountering infra
problems. No resummations of series or other techn
tricks as used by other analytical methods are needed.

It is well established that helium-4 at the lambda tran
tion is described by theO(2) universality class. The critica
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exponents can therefore be compared to previous h
precision estimates for this universality class. The excell
correspondence with other, more demanding calculations
experimental values shown in Table I demonstrates that
truncation is reliable for the universal quantities. The scal
requirement thatn andg, respectively, obtain the same va
ues above and below the critical temperature is also w
fulfilled.

C. Pressure

SincedG/dw* 5J, the minimum of the effective potentia
Uk50(r0) corresponds to the physical case of vanishing
ternal sources for the stationary helium system. The pres
P is given by the value of the effective potential at the min
mumr0 , P52TUk50(r0). The minimum valueUk@r0(k)#
can be followed by an evolution equation, which is obtain
from Eq. ~22!. It is given by

TABLE I. Critical exponents for the superfluid phase transiti
of helium-4 and comparison with values for theO(2) universality
class. The slight differences in the values obtained forn and g
above and below the critical temperature reflect numerical inac
racies.

Our results Other approachesa Experimental resultsb

0.6695c 0.67095~13!

n 0.675d 0.671e 0.6705~6!

0.667f 0.672g 0.6708~4!

0.3455c

b 0.359f 0.3485e

1.316c

g 1.305d 1.315e

1.298f 1.33g

aReferences 16 and 17.
bReferences 18–20.
cFrom summed perturbation series at six-loop order.
dFor T.Tc .
eFrom a fifth-ordere expansion.
fFor T,Tc .
gFrom lattice calculations.
]k~Uk@r0~k!# !5
1

2E d3q

~2p!3
@]kRk~q!#S 1

Zkq
21Rk~q!

1
1

Zkq
21Ykr0~k!q212Uk9@r0~k!#r0~k!1Rk~q!

D ~34!
ot
res-
in the spontaneously broken regime@r0(k)Þ0# and by

]k@Uk~0!#5E d3q

~2p!3

]kRk~q!

Zkq
21Uk8~0!1Rk~q!

~35!
in the symmetric regime@r0(k)50#. The starting value is
the classical minimumUL@r0(L)#52m̃2/@2ṽ(0)#.

We find that the solution of the flow equations does n
lead to a reliable estimate of the absolute value of the p
6-6
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sure. The main reason for this is a strong dependence on
UV cutoff, which is not well controlled by our method. Fo
example, the initial value ofUL@r0(L)# should also receive
a correction from higher Matsubara frequencies, which
do not calculate in our Schwinger-Dyson approach. This c
rection will depend notably on the microphysical details
the interaction and the choice of the UV cutoff. Fortunate
this is not the case for the temperature dependence of
pressure, which is mainly governed by the momentum ra
q2'2mT. We thus resort to normalizing the pressure at
critical temperature, wherem is given by the fixed-point con
dition, and only calculate theT dependence ofP. Figure 3
shows the dependence of the pressure on the temperatu
three different values of the chemical potential. Since
need to specify the chemical potential in our formalism wh
we want to calculate the order parameter and the densit
vapor pressure, we determinem(P,T) from this result and
use the experimentally known vapor-pressure curve
P(T).

D. Order parameter

While the critical exponentb describes the growing of th
order parameter in theO(2) universality class, we can als
calculate the order parameter for the helium system exp
itly. It is given by the expectation value of the fieldw. There-
fore, r0(k50) gives the magnitude squared of the expec
tion value of the field. In Fig. 4, we show the results for t
temperature dependence ofr05r0(k50). The superfluid
density is proportional tor0. The proportionality constant
however, depends on the wave-function renormalizat
which is not accurately determined so far.

E. Density

Finally, we compute the particle density as

n5
1

V K (
q

aq
†aqL

5
1

V (
n,q

^xn,q* xn,q&5
r0

V
1

1

2V
Tr~Gk50

(2) !21. ~36!

FIG. 3. Temperature dependence of the pressure for three
ferent values of the chemical potentialm calculated from the evo-
lution Eq. ~24!. ~The value ofm526.74 K corresponds to the
chemical potential at the critical temperature under vapor pres
as obtained from the fixed-point solution.!
13450
the

e
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f
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,

The inverse full propagator is block diagonal inn andq with

Gk
(2)~n,q!5S d2Gk@w,w* #

dwn,q* dwn,q

d2Gk@w,w* #

dw2n,2qdwn,q

d2Gk@w,w* #

dwn,q* dw2n,2q*

d2Gk@w,w* #

dw2n,2qdw2n,2q*
D ~37!

and contains fork50 the information about the phonon en
ergy spectrum for givenm andT and arbitrary strength of the
interaction. The trace in Eq.~36! includes a summation ove
momenta and Matsubara frequencies. We calculate the ei
values ofGk50

(2) from the truncation~23! and explicitly sum
over the Matsubara frequencies. This yields~in the rescaled
field variable!

n5
2m

b
r01

1

8p2E0

L

dqq2
Pp1Ps

APpPs

cothS b

4m
APpPsD ,

~38!

wherePp andPs again denote the inverse propagators of
Goldstone and the radial modes as in Eq.~31!, but with
Rk50(n,q)50. The massesU08 andU0812U09r are taken at
r0, so that in the spontaneously broken phase we h
U08(r0)50 and in the symmetric phaser050 and Pp

5Ps .
As in the calculation of the pressure, the calculations

the density do not give reliable results for the absolute va
of the density, which strongly depends on the UV cutoff a
is expected to get a sizeable contribution from three-part
interactions. We observe that the momentum integral in
~38! is dominated by high momentaq2'L2 and is therefore
strongly affected by the choice of the cutoff. Furthermo
this implies that the precise momentum dependence of
propagatorsPp and Ps could also have a substantial influ
ence on the value of the density. The temperature dep
dence of the density, on the other hand, is dominated byq2

'2mT. We thus allow for an overall shift of the density an

if-

re

FIG. 4. Magnitude squared of the order parameter of the su
fluid phase obtained from the evolution Eq.~24!. The chemical
potential is adapted so that the calculated pressure yields the v
pressure corresponding to the temperature.
6-7
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only calculate its temperature dependence. The results
shown in Fig. 5. They reproduce the qualitative picture of
density close to the phase transition. The peak atTc is clearly
visible as well as the slightly negative thermal-expans
coefficient forT,Tc .

The fact that our calculations deviate substantially ab
the critical temperature is due to the crude treatment of
wave-function renormalizationZ. In the present approach
we have usedZ(q2,T)5ZL51 andY(q2,T)5YL50. For a
more reliable treatment, the wave-function renormalizatio
Zk50 and Yk50 in Pp and Ps should be replaced by
momentum-dependent functionsZ(q2,T), Y(q2,T). We are
aware that the simplificationsZ(q2,T)5ZL51 and
Y(q2,T)5YL50 are less appropriate for the temperature
pendence of the density, for which the integral is domina
by q2'2mT. In the vicinity of the phase transition, the co
tribution to dn/dT from the fluctuation integral~38! scales
roughly}Z23/2. ReplacingZL51 by ZkT

, kT
252mT leads to

a less pronounced temperature dependence ifZkT
.1. Fur-

thermore, forT near Tc , critical fluctuations influence the
behavior ofZ and Y at low q2. We believe that our crude
treatment of the wave-function renormalization constitu
the most important source of error in determining the te
perature dependence of the density. We nevertheless se
we obtain qualitatively correct results, which are sta
against shifting the UV cutoff.

Since the temperature dependence of the density is n
universal critical quantity, an understanding of the mom
tum and temperature dependencies ofZ(q2,T) is mandatory
for a quantitative prediction. This is illustrated by Fig.
where we show the temperature dependence of a momen
independentZ(T) that would be needed for a reproduction
the experimental data.@The latter may be viewed as an e
fectiveT-dependent mean value ofZ(q2,T), which yields the
sameq2 integral~38! as the trueZ(q2,T).# This curve seems
reasonable, including the modest feature nearTc . Using the
dotted curve of Fig. 6 as an approximation to theseZ(T)
values still leads to considerable deviations from the
served density in the immediate vicinity ofTc , demonstrat-
ing the high precision to whichZ has to be known.

FIG. 5. Temperature dependence of the density. The densi
calculated for different temperatures around the critical point~filled
boxes! and compared to measurements~solid line!. The chemical
potential is adapted so that the calculated pressure yields the v
pressure corresponding to the temperature.
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Another reason why more precision on the wave-funct
renormalizations will be needed concerns the calculation
the excitation spectrum and the sound velocity. This requ
an understanding of theq2 dependence of the inverse fu
propagatorG (2) and thus strongly depends onZ(q2,T) and
Y(q2,T).

VII. CONCLUSIONS

We have computed thermodynamic properties of
strongly interacting system near a second-order phase tra
tion from ‘‘first principles.’’ Starting from the microphysica
interactions, we have determined the macroscopic thermo
namic potential for helium-4 near the superfluid phase tr
sition. Our method is based on an exact renormalizati
group equation. The critical exponents obtained by t
approach agree well with more elaborate state-of-the-art
culations and measurements. Our most robust nonunive
result, the critical chemical potential, is also in good agr
ment with experiment. It supports our computation of t
microphysical action by which helium-4 is described in t
language of functional integrals. This action contains an
ditive shift of the chemical potential that has not been co
sidered so far.

For quantitatively convincing results of the equation
state, one needs to improve the treatment of the UV cu
as well as additional effects of higher Matsubara frequenc
beyond those that we have taken into account in
Schwinger-Dyson formalism. A more accurate treatment
the wave-function renormalization is required as well. Qua
tatively, though, we reproduce important features of
equation of state such as the density peak at the phase
sition.

We emphasize that we treat here a temperature ra
where collective effects and critical behavior are crucial a
where many previous methods are plagued by severe infr
problems. Despite certain quantitative shortcomings,
work may be viewed as a demonstration thatab initio com-
putations of the equation of state become possible with m
ern renormalization-group techniques.

is

por

FIG. 6. Temperature dependence of the wave-function renorm
ization Z ~filled circles! that would be needed in Eq.~38! to yield
the observed density. The dotted line displays a simple expone
fit to the data.
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