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We investigate the transduction of sound stimuli into neural
responses and focus on locust auditory receptor cells. As in
other mechanosensory model systems, these neurons inte-
grate acoustic inputs over a fairly broad frequency range. To
test three alternative hypotheses about the nature of this spec-
tral integration (amplitude, energy, pressure), we perform intra-
cellular recordings while stimulating with superpositions of pure
tones. On the basis of online data analysis and automatic
feedback to the stimulus generator, we systematically explore
regions in stimulus space that lead to the same level of neural
activity. Focusing on such iso-firing-rate regions allows for a
rigorous quantitative comparison of the electrophysiological
data with predictions from the three hypotheses that is inde-
pendent of nonlinearities induced by the spike dynamics. We
find that the dependence of the firing rates of the receptors on

the composition of the frequency spectrum can be well de-
scribed by an energy-integrator model. This result holds at
stimulus onset as well as for the steady-state response, includ-
ing the case in which adaptation effects depend on the stimulus
spectrum. Predictions of the model for the responses to
bandpass-filtered noise stimuli are verified accurately. Together,
our data suggest that the sound-intensity coding of the recep-
tors can be understood as a three-step process, composed of
a linear filter, a summation of the energy contributions in the
frequency domain, and a firing-rate encoding of the resulting
effective sound intensity. These findings set quantitative con-
straints for future biophysical models.
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Auditory receptor cells are commonly characterized by their
responses to pure tones. For example, threshold curves charac-
terize the minimum intensity needed to evoke a response as a
function of the frequency of a pure tone; rate-intensity functions
describe how the response depends on the tone’s intensity. Nat-
ural signals, however, are only rarely restricted to single frequen-
cies, and receptor cells often show a broad frequency tuning. Our
understanding of auditory coding is thus not satisfactory as long as
we do not know how the relative intensities of different frequencies
contained in a sound signal are integrated by auditory receptors.
Investigating this spectral integration helps us also to scrutinize
basic principles of the mechanosensory transduction process.

In general, the response of the receptor could be any compli-
cated, nonlinear function of the frequency spectrum. One may
hope, however, that the underlying mechanism is simple enough
to allow for a straightforward phenomenological description. One
such way of combining different spectral contents would be the
extraction of a single physical stimulus property. Its nature is
intensely debated with respect to the question of temporal inte-
gration, i.e., how stimulus intensities are combined over time.
Psychoacoustic measurements of intensity-duration tradeoffs sug-

gest that the stimulus energy is the crucial variable (Garner, 1947;
Plomp and Bouman, 1959; Zwislocki, 1965; Florentine et al.,
1988), while a recent investigation of first-spike latencies in mam-
malian auditory-nerve fibers finds the time-integrated pressure as
the decisive stimulus attribute (Heil and Neubauer, 2001). In
insect auditory receptors, the differences between thresholds for
one- and two-click stimuli and intensity-duration tradeoffs are
consistent with temporal energy integration (Tougaard, 1996,
1998). Care must be taken, however, in the interpretation of these
data because temporal integration also depends on the time course
of several biophysical processes after the primary signal transduc-
tion such as internal calcium dynamics and spike generation.

Spectral integration, on the other hand, depends at least in
insects almost exclusively on the mechanosensory transduction
process; any fluctuations on the several kilohertz scale of relevant
sound frequencies that were still present after the transduction
(i.e., in the cell-membrane conductance) would be highly attenu-
ated by the low-pass filter properties of the cell membrane (Koch,
1999). Looking at spectral integration instead of temporal inte-
gration therefore enables us to focus on the site of primary signal
transduction.

For these reasons, we develop a descriptive model for the re-
sponses of auditory receptor neurons to stationary stimuli with
arbitrary power spectrum. The model comprises three steps, which
correspond to the coupling, the transduction, and the encoding of
the primary signal (Eyzaguirre and Kuffler, 1955; French, 1992).
Focusing on the locust auditory system, we investigate three alter-
native hypotheses about which stimulus property governs the trans-
duction process: the maximum amplitude of the stimulus, the
stimulus energy, and the average half-wave-rectified signal ampli-
tude. To test the model framework and distinguish between the
rival hypotheses, intracellular recordings from the axons of recep-
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tor cells are performed. Based on a systematic exploration of
stimuli that cause identical neural responses, the recordings reveal
how the individual spectral contributions are integrated into one
effective sound intensity.

MATERIALS AND METHODS
Electrophysiology. All experiments were performed on adult Locusta
migratoria. The tympanal auditory organ of these animals is located in
the first abdominal segment. After decapitation, removal of the legs,
wings, intestines, and the dorsal part of the thorax, the animal was waxed
to a holder, and the metathoracic ganglion and auditory nerve were
exposed. Action potentials from auditory receptor cells were recorded
intracellularly in the auditory nerve with standard glass microelectrodes
(borosilicate, GC100F-10; Harvard Apparatus Ltd., Edenbridge, UK)
filled with a 1 M KCl solution (50–110 M� resistance). The signals were
amplified (BRAMP-01; NPI Electronic, Tamm, Germany) and recorded
by a data acquisition board (PCI-MIO-16E-1; National Instruments,
München, Germany) with a sampling rate of 10 kHz. Detection of action
potentials and generation of acoustic signals were controlled on-line by
the custom-made Online Electrophysiology Laboratory (OEL) software.
Stimuli were transmitted by the above-mentioned data acquisition board
with a conversion rate of 100 kHz to the loudspeakers [Esotec D-260,
Dynaudio (Skanderborg, Denmark) on a DCA 450 amplifier (Denon
Electronic GmbH, Ratingen, Germany)]. These were mounted at 30 cm
distance on each side of the animal so that the incidence of sound-
pressure waves was orthogonal to the body axis. Stimuli were played only
by the loudspeaker ipsilateral to the recorded auditory nerve. The lin-
earity of the loudspeakers for superpositions of multiple tones was
verified by playing samples of the stimuli used in the experiments while
recording the sound at the site of the animals with a high-precision
microphone [40AC, G.R.A.S. Sound & Vibration (Vedbæk, Denmark)
on a 2690 conditioning amplifier (Brüel & Kjær, Langen, Germany)].
During the experiments, animals were kept either at room temperature,
which was �20°C or at a constant temperature of 30°C. No systematic
trends regarding a possible temperature dependence of the studied phe-
nomena were observed. All experiments were performed in a Faraday cage
lined with sound-attenuating foam to reduce echoes. Recordings from 45
receptor cells stemming from 18 animals (with at most 4 cells from the same
animal) were used in this study.

The experimental protocol complied with German law governing an-
imal care.

Measurement of rate-intensity functions. In general, each sound stimulus
was presented for a duration of 100 msec, separated by pauses of at least
400 msec. To investigate adaptation effects, control experiments with
longer stimuli and pauses (300/500 msec or 500/750 msec) were per-
formed. All of these stimuli are decidedly longer than typical integration
times of insect auditory receptors (1–3 msec as determined by reverse
correlation for locust auditory receptors; data not shown) (see also
Tougaard, 1998). Responses were measured by the average firing rate,
calculated as the total number of spikes divided by the stimulus length.
Spikes were detected on-line and counted from stimulus onset until 20 msec
beyond stimulus offset to include all spikes elicited by the stimulus. This is
justified because the investigated cells show no or only very low spontane-
ous activity and no offset response. Spike trains from the control experi-
ments were also used for off-line analysis of specific response episodes.

Rate-intensity functions were determined in the following way. First,
the stimulus was presented in steps of 5 dB between 20 and 100 dB sound
pressure level (SPL) (for a definition see Eq. 21 in the Appendix) to
obtain the general shape of the rate-intensity function. These data were
used to identify the intensity range that gave rise to firing rates between
50 and 250 Hz. Within this dynamic range of �10–15 dB, additional
measurements in steps of 1 or 2 dB were performed, and these were
repeated 4–10 times to yield average firing rates and their SDs.

Stimulus intensities corresponding to given firing rates were obtained
by fitting a straight line through the four points closest to the desired
firing rate as shown in Figure 1. Errors on these measurements follow
from the errors of the fitted parameters according to the law of error
propagation. Thresholds were determined by linear extrapolation to zero
firing rate from data points with a low, but significant firing rate.

Superposition of pure tones. Measuring rate-intensity functions for pure
tones allows one to understand how the firing rate r depends on the
amplitude A of a single tone for a certain sound frequency, r � r(A).
Investigating spectral integration amounts to asking whether this under-

standing can be extended to stimuli that contain multiple tones simulta-
neously. We therefore try to obtain a description of the firing rate r
depending on the amplitudes A1 , A2 , . . . of the different frequency
components of such stimuli, r � r(A1 , A2 , . . .).

In a first set of experiments, stimuli were sound-pressure waves S(t)
consisting of two or three pure tones of amplitudes An , frequencies fn ,
and phase offsets �n , n � 1, 2, 3:

S�t� � A1 sin�2�f1t � �1� � A2 sin�2�f2 t � �2� � A3 sin�2�f3 t � �3�,

(1)

with A3 � 0 for the two-tone experiments. We used stimuli that were far
longer than the periods of the sine waves and avoided combinations of
frequencies that are related to each other by small integer factors. This
makes the measurements insensitive to the relative phases of the indi-
vidual sine tones, which we cannot control in our experiments because of
putative phase shifts at the tympanal membrane (Michelsen, 1971b). For
concreteness, we set �1 � �2 � �3 � 0 in all experiments. The frequen-
cies were chosen to be far enough apart to avoid beating. The two-tone
experiments were performed with sound frequencies f1 � 4 kHz and f2 �
3/� � 10 kHz � 9.55 kHz, the three-tone experiments with f1 � 4 kHz,
f2 � 3/� � 10 kHz � 9.55 kHz, and f3 � 10/�2 � 15 kHz � 15.20 kHz or with
f1 � 6 kHz, f2 � 3/� � 9 kHz � 8.59 kHz, and f3 � 10/�2 � 17 kHz � 17.22
kHz.

Within the present approach, we are concerned only with the encoding
of sound intensity and not with temporal aspects. We thus restricted our
attention to stationary stimuli with constant envelope as described above.

Figure 1. Determination of sound intensities corresponding to given
firing rates. A, Example of a spike train recorded intracellularly from an
axon of a receptor cell. Calibration is given to the right. The thick bar
below the voltage trace denotes the 500 msec pure-tone stimulus. The
vertical bars below show the spike times as determined by the spike-
detection algorithm. The firing rate is calculated by counting the spikes
and averaging over several stimulus repetitions. B, Example of the rising
part of a rate-intensity function (E) measured in steps of 1 dB. Each
stimulus was repeated multiple times. Vertical bars denote the SD of each
measurement. Linear fits through the four points closest to the firing rates
of interest, here 100 and 150 Hz, are depicted as dotted and dashed lines,
respectively. The arrows indicate the readout of the corresponding
intensities.
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This is justified because the responses of locust auditory receptors do not
phase lock to sound frequencies in the kilohertz range (Suga, 1960; Hill,
1983a).

The experiments were designed to identify, for individual receptors,
sets of amplitude combinations (A1 , A2 ) or (A1 , A2 , A3 ), respectively,
that result in the same firing rate. The recorded data were analyzed
within a model framework, which includes explicit predictions about how
these amplitude combinations should be related to each other. In Results,
the model is systematically developed and discussed. Here, we only
present the main aspects and cover technical issues and questions re-
garding the model’s role within the data analysis.

In summary, we compute the average firing rate of a receptor cell in
the following three-step process.

(1) The stimulus is a sound-pressure wave S(t), a superposition of pure
tones with frequencies fn , amplitudes An , and phase offsets �n , S(t) �
�n�1

N An sin(2�fnt � �n ). In the first step, this signal is linearly filtered
and thereby turned into:

S̃�t� � �
n�1

N
An

Cn
sin�2�fnt � �̃n�. (2)

This means that every tone receives a gain factor 1/Cn. In addition, the
phase may change from �n to �̃n. The inverse of the filter constant Cn thus
corresponds to the sensitivity for the frequency fn: the smaller the Cn , the
more sensitive the receptor at the corresponding sound frequency.

(2) An effective sound intensity J is computed according to one of the
following three hypotheses:

amplitude hypothesis (AH): JAH � �
n�1

N

An/Cn;

energy hypothesis (EH): JEH � 1/2 � �
n�1

N

�An/Cn�
2;

pressure hypothesis (PH): JPH � 	�S̃�t��
;

where S̃(t) is the filtered signal from Equation 2, �x� denotes the absolute
value of x, and 	y(t)
 is the temporal average of y(t).

(3) The average firing rate r is determined according to a single
nonlinear function r(J).

Note that the effective sound intensity J as defined above is distinct
from the physical sound intensity, commonly measured in decibels SPL
(compare Eq. 21 in the Appendix), which we denote by I throughout the
text. Whereas I measures the stimulus itself, J is a derived quantity that
incorporates the filter constants Cn and therefore also reflects the sensi-
tivity of the specific receptor cell. Furthermore, I is defined as a loga-
rithmic measure (relative to a predefined reference intensity); J is not,
which facilitates the notation.

Within the model framework, the filter constants Cn are determined
only up to a common factor, which can be absorbed in the function r(J).
In other words, the model remains unchanged if all Cn are multiplied by
the same constant and r(J) is at the same time adjusted appropriately. It
follows that one way to determine the Cn is to choose a fixed firing rate,
find for each frequency fn the amplitude Ân that leads to this firing rate,
and set Cn � Ân.

In the following description of the experimental procedure, we will for
simplicity focus on the case of superpositions of two tones. The generali-
zation of concepts and formulas to the three-tone case is straightforward.

The three alternative hypotheses result in different predictions about
which combinations of amplitudes (A1 , A2 ) are expected to lead to the
same firing rate. Because the model implies that equal firing rate follows
from equal effective sound intensity J (step 3), curves of constant firing
rate can easily be calculated for each hypothesis by setting J constant in
the equations of the second step in the model. These “iso-firing-rate
curves” are shown in Figure 2. From the amplitude hypothesis, pairs (A1 ,
A2 ) yielding the same firing rate are expected to lie on a straight line.
Likewise, from the energy hypothesis, they are expected to lie on an
ellipse. For the pressure hypothesis, they should fall on an even more

strongly bent curve. The corresponding shape has to be computed nu-
merically by solving the equation:

	�S̃�t��
 �
1
� �

0

�

dt�A1

C1
sin�2�f1t� �

A2

C2
sin�2�f2 t��� constant, (3)

for pairs:

�A1

C1
,

A2

C2
� .

The duration � has to be chosen large enough to cover many cycles of the
sine waves in the signal, so that the phases �̃n can be neglected. Note that
the shape of these three alternative iso-firing-rate curves is not influ-
enced in any way by the form of r(J).

To relate these predictions to experimental results, we determined a
set of amplitude combinations leading to the same average firing rate in
the following way. We start by measuring a first rate-intensity function
for a single pure tone with frequency f1. From this rate-intensity func-
tion, we determine the amplitude A1

(1) that leads to a firing rate of, e.g.,
150 Hz as shown in Figure 1. (In the notation Ai

(n), the subscript i refers
to the frequency fi at which the amplitude is measured, and the super-
script n indicates the number of the measurement, 1 � n � N where N
denotes the total number of measurements.) Because the amplitude A2 of
the second frequency component is zero for this stimulus, we denote the
result as a data point (A1

(1), 0), i.e., a point on the A1 axis in a graph such

Figure 2. Prediction of iso-firing-rate curves for the superposition of two
pure tones. Depending on the model, the effective sound intensity J as well
as the firing rate are expected to be constant along different curves in the
two-dimensional space of amplitude combinations. A1 and A2 denote the
amplitudes of the respective components. According to the amplitude
hypothesis (AH ), iso-firing-rate curves are straight lines (one example
shown by the dashed line); according to the energy hypothesis (EH ), they
are ellipses (solid line); and according to the pressure hypothesis (PH ), they
are even more strongly bent curves (dash–dotted line), the exact shape of
which has to be determined numerically. The scale of the axes is given by
the filter constants C1 and C2. Note that when the hypotheses are fitted to
the data, the obtained filter constants will in general be different for each
model, and the intersection points with the axes will not coincide because
C1 and C2 are free parameters for each model. The gray arrows indicate
equally spaced directions along which the rate-intensity curves are mea-
sured. In each direction, the intensity increases with increasing amplitudes
A1 and A2 , whereas A1 /A2 is kept fixed and determined by the angle �. (One
example for this angle is denoted in the figure.) The intersection points of
the arrows with the iso-firing-rate curves denote the amplitude combina-
tions that are expected to yield the specified firing rate according to each of
the three alternative hypotheses. Because the three intersection points on
each gray arrow clearly differ from each other, the measurements of the
iso-firing-rate curves can be used to distinguish between the hypotheses.
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as that of Figure 2. The same procedure is performed for a pure tone
with frequency f2 , leading to a second data point (0, A2

(2)) on the A2 axis
that also corresponds to a firing rate of 150 Hz. These two amplitudes
A1

(1) and A2
(2) can already serve as estimates of the filter constants C1 and

C2 , respectively. We proceed by measuring rate-intensity functions for
superpositions of the two tones where the ratio of the amplitudes A1 and
A2 is held fixed. To do so, we set A1 � k�A2 and then jointly vary the
intensity of A1 and A2. This corresponds to measuring the rate-intensity
functions along straight lines in radial direction as pictured by the gray
arrows in Figure 2. It is also evident from the figure that the radial
direction is well suited for accurate measurements of the iso-firing-rate
curves and for discriminating between the hypotheses. The resulting
rate-intensity functions are similar in shape to the ones for the pure
tones, and we can again determine the stimulus that leads to a firing rate
of 150 Hz as in Figure 1. This yields a third data point (A1

(3), A2
(3)) with

A1
(3)/A2

(3) � k. The procedure is continued for several different ratios k so
that a set of amplitude pairs (A1

(n), A2
(n)) is obtained.

A technical but important question is which ratios k should be used in
the experiment. If the neuron is much more sensitive to one of the sound
frequencies and if both amplitudes are comparable in size, i.e., A1 � A2 ,
the response will be determined almost exclusively by the more effective
sound frequency. To be most informative, the measurement should thus
take the relative sensitivities into account. This is done by choosing k so
that A1 /C1 and A2 /C2 are of the same order of magnitude, which assures
that the effect of both tones is roughly the same. To do so, we use the
estimates of C1 and C2 that have been obtained from the first two
rate-intensity functions for the pure tones as explained above. In partic-
ular, the different ratios of A1 and A2 for subsequent measurements are
selected on-line in such a way that after taking C1 and C2 into account,
the directions along which the rate-intensity functions are measured are
evenly spaced. The gray arrows in Figure 2 are such directions. Note that
their even spacing depends on the scales of the axes given by C1 and C2.
The calculation that achieves this is as follows: choose angles � that are
evenly spaced in the interval [0°, 90°] and use the relation for the slope
� of a straight line:

� � tan � �
A1 /C1

A2 /C2
� k �

C2

C1
.

In the off-line analysis, the parameters C1 and C2 were newly deter-
mined by 	2 fits of each of the three curves in Figure 2 to the complete
data set (A1

(n), A2
(n)). These fitted values of C1 and C2 should be more

reliable than the initial estimates, which were obtained on-line from the
pure-tone rate-intensity functions only.

A further technical detail concerns the choice of the fitting procedure.
The procedure should treat A1 and A2 in a symmetric fashion, and it should
not be affected by potentially large differences in the relative sensitivities
for the two tones. This discards, e.g., the simplest choice of regarding A2 as
a function of A1 or vice versa. Instead, we normalized the amplitudes by the
filter constants and looked at the radial distance of the data points:

�A1
�n�

C1
,

A2
�n�

C2
� ,

from the origin, which is given by:

��A1
�n�

C1
� 2

� �A2
�n�

C2
� 2

,

as a function of the ratio:

�n �
A1

�n�/C1

A2
�n�/C2

.

This is a natural choice because the rate-intensity functions that led to
the data points were measured in this radial direction. For the three
hypotheses, we denote the predicted radial distance by dm

(n), where m
stands for the particular model hypothesis (m � AH, EH, or PH). dm

(n)

can be obtained from the model as a function of �n and corresponds to
the normalized distance from the origin to the respective iso-firing-rate
curve in Figure 2. For the amplitude hypothesis, one obtains:

dAH
�n� � ��n

2 � 1/��n � 1�,

for the energy hypothesis, dEH
(n) � 1, and for the pressure hypothesis, dPH

(n)

has to be determined numerically using the solutions of Equation 3.

Estimating C1 and C2 then corresponds to minimizing the 	2 function
for the radial distance for each model m:

	m
2 �C1 , C2� � �

n

� ��A1
�n�

C1
� 2

� �A2
�n�

C2
� 2


 dm
�n�	 2

�n
2 , (4)

with respect to C1 and C2. The contributions of the data points are
weighted by the measurement errors �n , which follow from the measure-
ment errors �A1

(n) and �A2
(n) for A1

(n) and A2
(n), respectively, by the law of

error propagation as:

�n � ��A1
�n� � �A1

�n�

C1
2 � 2

� �A2
�n� � �A2

�n�

C2
2 � 2

�A1
�n�

C1
� 2

� �A2
�n�

C2
� 2 . (5)

The fitted curves and the 	2 values obtained from the fits were used for
further statistical analysis (see below).

For the control experiments with stimulus lengths of 300 or 500 msec,
the onset response and the steady-state response were analyzed individ-
ually. For the onset, only spikes in the first 30 msec after stimulus onset
were taken into account; for the steady state, the first 200 msec of the
response were disregarded. The control experiments were aimed at
investigating the effect of adaptation on our model description. We
therefore performed the same analysis as explained above on the firing
rates obtained for the onset and the steady state and fitted the filter
constants C1 and C2 separately in each case. In addition, we compared C1
and C2 as well as their ratio R � C1 /C2 for the onset with the respective
values for the steady state. The relative change of R was computed from
the onset value, RO , and the steady-state value, RS , as �R � �RO � RS�/RS.
For the total response, the ratio of C1 and C2 is denoted by Rtotal. To
estimate the significance of changes in C1 , C2 , and R between the onset
and the steady state, error measures for these parameters were computed
for each cell individually by taking several nonoverlapping stretches of 30
msec during the steady state for the analysis, determining C1 , C2 , and R
in each case, and computing the respective SDs.

Experiments with superpositions of three pure tones were performed
and analyzed in the same way as the two-tone experiments. We first
measured rate-intensity functions for each pure tone and from these
obtained initial estimates of the respective filter constants C1 , C2 , and C3.
Subsequently, rate-intensity functions were measured along different
directions in the three-dimensional stimulus space:

�A1

C1
,

A2

C2
,

A3

C3
� .

The ratios of:

A1

C1
:

A2

C2
:

A3

C3
,

were taken as 1:1:1, 2:1:1, 1:2:1, and 1:1:2. Final fits of the model
parameters C1 , C2 , and C3 were obtained in an analogous way as for the
superposition of two tones.

Statistical analysis. The 	2 values obtained from the fits were used to
test the statistical significance of deviations of the data from the models
by a standard 	2 test for each cell individually.

The Bayesian probability of a model given the data can be used as a
measure for the preference of one hypothesis over another. It is calcu-
lated from Bayes’ formula:

p�model m�data� �
p�data�model m�

p�data�
� p�model m�, (6)

where p(data) � �m p(data�model m)�p(model m). If there is no a priori
evidence for any model, the prior probabilities for the models are to be
set to p(model m) � 1/M, where M is the number of models investigated.
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The probabilities p(data�model m) were calculated from the difference
between:

��A1
�n�

C1
� 2

� �A2
�n�

C2
� 2

,

and the corresponding model predictions dm
(n) by assuming independent

errors with a Gaussian distribution of SDs �n (given by the measurement
errors) and a finite and fixed measurement resolution �:

p�data�model m� �

� � 

n

1

�2��n
2 exp��

1
2�n

2 � ���A1
�n�

C1
�2

� �A2
�n�

C2
�2


 dm
�n�	2�. (7)

An analogous formula was used in the case of superpositions of three
pure tones.

Trends in the data were tested for statistical significance by a standard
run test (Barlow, 1989). For a given model, the data points were subdi-
vided into those sequences of points that lie consecutively either above or
below the model prediction, and the number of these sequences was
tested for significant deviations from the null hypothesis of indepen-
dently scattered data points around the model prediction.

Comparison of pure-tone and noise stimuli. In another set of experi-
ments, we tested whether our understanding of spectral integration
allows accurate predictions of firing rates for more complex stimuli and
focused on bandpass-filtered noise. To calibrate the model for a specific
receptor, we measured the rate-intensity function for a pure tone as well
as a set of filter constants in the relevant frequency band of the noise
stimulus. According to our model, we can use these pure-tone results to
calculate a prediction for the rate-intensity function of the noise stimulus
(see below). The filter constants are needed for the calculation of the
effective sound intensity J for the noise stimulus (model step 2), and the
pure-tone rate-intensity function is needed because it implicitly contains
the information about the shape of the response function r(J) of model
step 3. To assess the reliability of the prediction, the rate-intensity
function for the noise stimulus was also measured experimentally. The
particular noise stimulus that we used was Gaussian white noise, cut off
at 3 SDs and bandpass filtered between 5 and 10 kHz, and the
frequency of the pure-tone stimulus was 4 kHz. Note that when the
amplitude of a noise stimulus is varied, all amplitudes in the signal are
scaled by a common factor.

The prediction for the rate-intensity function of the noise signal is
obtained in the following way. According to our model, the rate-intensity
function of the pure tone, r pt(I), and the rate-intensity function of the
noise stimulus, r noise(I), should have the same shape and be related to
each other by a shift �I along the decibel-intensity axis:

rnoise�I� � r pt�I 
 �I�. (8)

For notational simplicity, we always use the same symbol r to denote the
firing rate regardless of whether we consider its dependence on the sound
intensity I, r(I), or on the effective sound intensity J, r(J). Strictly speak-
ing, r(I) and r(J) are different functions, but from the context, it will
always be clear to which function we refer.

Let us briefly describe the reason for the relation of Equation 8. For
concreteness, we focus on the energy hypothesis; the amplitude and the
pressure hypotheses can be dealt with in an analogous way. Consider
an arbitrary sound signal S(t) composed of a set of pure tones with
amplitudes An. From these, we can calculate the intensity, which is
defined as:

I � 20log10

�	S�t�2


20 �Pa � 20log10

�1
2 � �n An

2

20 �Pa , (9)

as well as the effective sound intensity:

JEH �
1
2 �n�An

Cn
�2

.

The essential observation is that multiplying every An by the same factor
k amounts to adding a constant 20log10k to the intensity I (if k � 1, this
constant is negative), whereas JEH is multiplied by a factor k 2.

We now consider a noise stimulus with intensity I noise and effective

sound intensity J EH
noise. To compare the response with that of a pure tone,

we find the intensity I pt that yields the same firing rate as the noise
stimulus by setting both effective sound intensities equal:

J EH
pt �

1
2 �Apt

Cpt�2

� J EH
noise .

The parameter C pt denotes the filter constant for the pure tone. From the
preceding equation, we can calculate the pure-tone amplitude A pt and
thus the intensity I pt of the pure tone, for which the firing rate is the same
as for the noise signal with given intensity I noise. Let us denote the
difference between I noise and I pt by �I.

If we multiply all amplitudes by the same factor k, the amplitudes of the
noise signal as well as A pt, the intensities I noise and I pt are changed by the
same amount. Consequently, the difference between the new intensities
is still given by �I. Likewise, the effective sound intensities are multiplied
by the same factor, i.e., we still have JEH

pt � JEH
noise. Because the firing rate

depends only on the value of J, this means that for the new intensities, the
firing rates are also equal. It follows that whenever the intensities of the
pure tone and the noise signal differ by �I, the firing rates for the two
stimuli are the same. A thorough mathematical derivation of this con-
cept, which also yields explicit expressions for the amount of the shifts for
the energy and pressure hypotheses, can be found in the Appendix.

The derivation shows that the predicted �I is given by:

�IEH � �10log10 ��Cpt�2 �n An
2/Cn

2

�n An
2 � , (10)

for the energy hypothesis and by:

�IPH � �10log10��

4 �Cpt�2 �n An
2/Cn

2

�n An
2 �, (11)

for the pressure hypothesis. The two predictions for �I differ by �10log10
�

4
� 1.05 dB. Because this is below our measurement accuracy, we do not

use this experiment for distinguishing between the hypotheses, but rather
as a test of the generality and the predictive power of the model per se.

Evaluating Equations 10 and 11 is possible if one knows the filter
constants and the An

2 for the amplitudes in the noise signal. The latter are
given by the power spectrum of the noise signal, which we calculated in
discretized bins of width 0.05 kHz (using a triangular Bartlett window).
Filter constants Cn were measured for pure tones between 5 and 10 kHz
at every 0.2–1 kHz (depending on the length of the recording) by deter-
mining the amplitude that led to a firing rate of 260 Hz. Additional filter
constants Cn , for all center frequencies of the power-spectrum bins, can be
determined by linear interpolation from the measured filter constants.

The prediction for the noise-stimulus rate-intensity function that re-
sults from shifting the pure-tone rate-intensity function r pt(I) by �I is
compared with the measured curve r noise(I). To do this quantitatively,
the prediction of �I is related to the true shift �Itrue that can be extracted
from the measured rate-intensity functions of the pure tone and the noise
signal as the distance between these two functions. Because the rate-
intensity functions are given by individual pairs of intensity and firing
rate, (I, r), we use the distance of such a data point of one rate-intensity
function to the approximate location of the other rate-intensity function.
For a data point (I pt, r pt) from pure-tone stimulation, e.g., we thus
determine the intensity Î noise that would be expected to lead to the same
firing rate r pt, but for the noise stimulus. The determination of Î noise

given the firing rate r pt is again done by linear interpolation of the noise
rate-intensity function as in Figure 1. We thus find for every intensity I n

pt

of the pure-tone rate-intensity function a corresponding Î n
noise, and

similarly for every intensity I m
noise of the noise rate-intensity function a

corresponding Î m
pt. Because ideally, these should be related by Î n

noise �
I n

pt � �Itrue and Î m
pt � I m

noise � �Itrue , we can estimate �Itrue by
minimizing the 	2 function:

	2��Itrue� � �
n

�I n
pt 
 În

noise � �Itrue�
2 � �

m

�I m
noise 
 Î m

pt 
 �Itrue�
2.

(12)

Because the subthreshold part and the saturation are not important in the
determination of the actual shift, only data points (I, r) with r between 20
and 80% of the maximum firing rate of the cell were taken into account.
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RESULTS
The objective of this study is to develop a descriptive model for
the responses of auditory receptor neurons to arbitrary stationary
acoustic stimuli. This is done to identify the dominant physical
stimulus property governing the encoding of sound intensity. We
first develop a general mathematical framework for the transfor-
mation of the incoming sound into the neural response. Subse-
quently, we apply the model to locust auditory receptors and show
that the experimental data are well described by only one of three
rival hypotheses about the nature of the primary signal
transduction.

Derivation of the mathematical model
In locusts, auditory signals are encoded by 60–80 receptor neu-
rons at each ear with similar general properties but considerable
variability in the parameter values describing the sensitivity of
individual neurons to specific sound frequencies (Römer, 1985).
In response to a pure tone with sufficient intensity, the firing rate
of a receptor cell increases in a sigmoidal fashion with stimulus
intensity (Fig. 3A). The steepness and level of saturation of this
rate-intensity function depend on the individual cell and temper-
ature. Below a threshold intensity, there is no or only very low
spontaneous activity. The regime between threshold and satura-
tion usually spans �15–30 dB, and maximum firing rates lie at
�300 Hz for room temperature and �500 Hz for 30°C.

The frequency-resolved sensitivity of the receptors can be
characterized by a threshold curve, i.e., the dependence of the
threshold on the sound frequency (Fig. 3D). The receptors are
fairly broadly tuned with characteristic frequencies in the range
of 4 kHz (low-frequency receptors) to 15 kHz (high-frequency

receptors), and the absolute sensitivities vary strongly between
individual neurons (Römer, 1985; Jacobs et al., 1999).

Measuring rate-intensity functions from a single receptor cell
for many different sound frequencies reveals another property of
the receptors; to good approximation, the rate-intensity functions
are shifted versions of one another along the intensity axis, where
intensity is measured in the logarithmic units of sound-pressure
level, decibels SPL. This phenomenon has been reported previ-
ously by Suga (1960) and Römer (1976). A detailed example with
frequencies spanning the whole sensitivity range of a typical
low-frequency receptor (characteristic frequency of �5 kHz) can
be seen in Figure 3B. The generic shape of the rate-intensity
functions becomes even clearer if they are shifted relative to each
other and aligned at 250 Hz firing rate (Fig. 3C). Figure 3D shows
the threshold curve together with curves denoting the intensities
that lead to firing rates of 150 and 300 Hz. As a consequence of
the generic shape of the rate-intensity functions, all curves are
approximately parallel to each other.

These key findings indicate that over the whole frequency
range, the coupling of the physical stimulus is not substantially
influenced by mechanical nonlinearities. In fact, a simple filtering
mechanism captures the essence of the observed phenomenon.
Let us assume that for all pure tones the firing rate is given by a
single function r(An /Cn ). An denotes the amplitude of a specific
pure tone of frequency fn , and Cn is a frequency-dependent filter
constant such that the firing rate depends only on the ratio An /Cn.
This corresponds to a gain factor of 1/Cn for each sound fre-
quency. For two different frequencies f1 and f2 , the firing rates
r(A1 /C1 ) and r(A2 /C2 ) are then the same when A1 /C1 � A2 /C2 ,
i.e., when the amplitudes take on a constant ratio A1 /A2 � C1 /C2.

Figure 3. Firing-rate responses of a lo-
cust auditory receptor cell. A, Rate-
intensity function for a 7 kHz pure tone.
The observed sigmoidal shape of the
rate-intensity function is typical for
many receptor types. Below a threshold
of �45 dB SPL, the cell shows virtually
no response. B, Rate-intensity functions
of the same neuron for many different
pure tones between 1.25 and 28 kHz.
Connected points belong to the same
sound frequency. Curves farther to the
lef t correspond to frequencies at which
the cell is more sensitive. Although
there are large differences concerning
the intensity range where the individual
rate-intensity functions rise from
threshold to saturation, their overall
shape is very similar. For example, all
measured rate-intensity functions have
approximately the same slope in the ris-
ing part of the curves and saturate at
around the same level. C, The same
rate-intensity functions as in B, now
shifted along the decibel axis such that
they align at a firing rate of 250 Hz. This
demonstrates the generic shape of the
rate-intensity functions. D, Curves de-
noting equal firing rates at different
sound intensities for the same cell. The
threshold curve (solid line) and the in-
tensities corresponding to constant fir-
ing rates of 150 Hz (dashed line) and 300

Hz (dotted line) are shown for pure tones between 1.25 and 28 kHz. The three curves are approximately parallel to each other, reflecting the
similarity of the rate-intensity functions for different frequencies.
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Because the intensity I in decibels SPL is defined as a logarithmic
measure of the amplitude, I � 20log10(A/(�2�20 �Pa)), this con-
stant amplitude ratio corresponds to a constant intensity differ-
ence, �I � I1 � I2 � 20log10(C1 /C2 ). The firing rates for the two
tones are therefore always the same if their intensities differ by �I.
The rate-intensity functions are thus shifted versions of one
another separated by �I as found in the experiment. Generalizing
this idea to stimuli containing more than one frequency leads us
to the first step of our model:

Step 1: coupling to the stimulus
The sound pressure wave S(t), written as a Fourier series:

S�t� � �
n�1

N

Ansin�2�fnt � �n�, (13)

where the fn denote the frequencies, �n phase offsets, and the An

the respective amplitudes, is initially transformed into a filtered
signal S̃(t):

S̃�t� � �
n�1

N An

Cn
sin�2�fnt � �̃n�. (14)

The amplitudes are multiplied by frequency-dependent gain fac-
tors 1/Cn. These describe the frequency-resolved sensitivity, i.e.,
the tuning of the receptor cell, and correspond directly to the
values of the threshold curve at the frequencies fn. In addition, a
putative phase shift turns �n into �̃n.

Although the above reasoning for using a linear filter as the first
model step is based on electrophysiological observations only, it
corresponds well with biophysical findings regarding the tympa-
nal membrane. Schiolten et al. (1981) observed that the tympanal
membrane behaves approximately as a linear oscillator with a
short damping time constant of �100 �sec. The resonance prop-
erties of this oscillator are thought to be responsible for the
frequency-resolved gain of the receptors and therefore also for
the shapes of the threshold curves (Michelsen, 1971a, 1971b,
1979). Michelsen and Rohrseitz (1995) also note that the ampli-
tude of the tympanal vibration depends linearly on the sound
pressure for pure tones.

Step 2: mechanosensory transduction
Receptor cells are attached to the tympanal membrane with a
cilium protruding from the dendrite and several auxiliary cells
surrounding a receptor (Gray, 1960). The biophysical functioning
of this machinery is not yet understood, but oscillations of the
tympanal membrane presumably lead to conductance changes in
the receptors’ dendrites that give rise to membrane depolariza-
tions (Hill, 1983a, 1983b). This is where a spectral integration of
frequency-dependent stimulus attributes must occur. Voltage
fluctuations in the range of the relevant sound frequencies (sev-
eral kilohertz) cannot be transmitted by the cell membrane be-
cause of its low-pass filter properties. Information about the
spectral content is therefore lost at the level of the membrane
potential, which, instead, is expected to correspond to an inte-
grated stimulus property. The spectrum of the generator potential
after acoustic stimulation is indeed found to contain no trace of
the sound frequency used (Hill, 1983a).

Following ideas from the literature concerning temporal inte-
gration in auditory receptor cells (Tougaard, 1996; Heil and
Neubauer, 2001), we set up three hypotheses for the spectral
integration by calculating an “effective sound intensity” J from S̃(t).

Amplitude hypothesis (AH)
J corresponds to the maximum amplitude of S̃(t). This is the
common view of a threshold: a response occurs once the signal
reaches a certain value. In the case of few frequency components,
J is given by the sum of the scaled amplitudes:

JAH � �
n�1

N An

Cn
. (15)

Energy hypothesis (EH)
J corresponds to the temporal mean of the squared signal [through-
out what follows, 	x(t)
 denotes the temporal mean of x(t)]:

JEH � 	S̃�t�2
. (16)

From Parseval’s Theorem (Press et al., 1992), we see that this
expression can be rewritten as the sum of the squares of the scaled
amplitudes:

JEH �
1
2 �

n�1

N An
2

Cn
2 . (17)

Because the square of the amplitude of a sinusoidal oscillation is
proportional to the energy contained in the oscillation, this hy-
pothesis reflects an energy-integration mechanism.

Pressure hypothesis (PH)
J corresponds to the temporal mean of the absolute value of S̃(t):

JPH � 	�S̃�t��
. (18)

This hypothesis complies with a pressure-integration mechanism
after half-wave rectification.

Step 3: encoding by firing rates
The response of an auditory receptor to a signal of constant
intensity can be characterized by a mean firing rate r. The rate is
obtained from a one-dimensional, nonlinear transformation of
the effective sound intensity J:

firing rate � r� J�. (19)

Note that the effective sound intensity J is a theoretical con-
struct, which does not necessarily correspond to a biophysical
property. It is used here to describe regions of constant firing rate
in stimulus space because these correspond to regions of constant
J. Therefore, instead of the specifically simple versions of J given
above, we could also use any transformation J̃ � f(J) with some
appropriate function f. This transformation does not affect the
shape of the regions of constant J, but we can speculate that for
the correct choice of f, J̃ has a direct biophysical interpretation,
such as the change in membrane conductance caused by the
stimulus.

Measured spike-train responses have a strong transient attrib-
utable to adaptation. In a first approach, we average over this
temporal structure in the response and consider only the total
number of spikes elicited by the stimulus. In a second, more
detailed analysis, we analyze individual parts of the response to
explicitly test how this structure in the spike trains might affect
our model description.
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Electrophysiological experiments
Experimental strategy
To directly address the question of spectral integration and the
hypotheses in step 2 of our model, we compare only stimuli that
lead to the same firing rate of a given neuron. With this strategy,
we circumvent complications attributable to the nonlinearity in-
duced by the spike-generation mechanism. In terms of our model,
a constant firing rate implies a constant effective sound intensity
J and vice versa, independently of the specific shape of r(J). As a
crucial element of our analysis, we therefore identify regions of
constant J in stimulus space (A1 , A2 , . . .) by searching for stimulus
combinations that result in the same firing rate. We denote these
regions as iso-firing-rate regions. They are then compared with
the predictions of the three hypotheses and reveal how J is
composed of contributions from the single amplitudes. Because
the rate-intensity functions are found to be fairly smooth in the
rising part between threshold and saturation, extracting iso-
firing-rate regions can be accurately done by linear interpolation
as is shown in Figure 1.

Superpositions of two pure tones
The complete stimulus space of stationary stimuli is, of course,
high dimensional. We thus started with low-dimensional sub-
spaces using only two or three pure tones and their superposi-
tions. In the two-dimensional subspace (A1 , A2 ), each point
represents a linear combination of two pure-tone signals at fre-
quencies f1 and f2 (4 and 9.55 kHz):

S�t� � A1 sin�2�f1t� � A2 sin�2�f2 t�. (20)

For these stimuli, we determined combinations (A1 , A2) that yield
the same fixed firing rate. Figure 2 shows the shapes of the
iso-firing-rate curves as predicted by the three hypotheses.

Responses to superpositions of two pure tones with stimulus
duration of 100 msec were measured for 17 cells. Figure 4 depicts
sets of amplitude combinations (A1 , A2) that led to a firing rate of

150 Hz in each of the four cells presented. Fitted iso-firing-rate
curves corresponding to the three hypotheses are also shown.

Performing a 	2 test on the fits of the three hypotheses showed
that the amplitude hypothesis is rejected at the 1% level for all 17
cells, whereas the energy hypothesis is not rejected for any cell
and the pressure hypothesis is rejected for 4 cells. For an in-depth
analysis, we therefore considered only the energy and the pres-
sure hypotheses.

To further distinguish between these two hypotheses, we di-
rectly compared the goodness of fit given by the 	2 values. The
energy hypothesis yielded a lower 	2 than the pressure hypothesis
in 16 of 17 cases. We also calculated a Bayesian estimate of the
probability p(model�data) of the model given the data (with prior
probabilities of 0.5 for both the energy and the pressure hypoth-
esis). The mean of p(EH�data) was obtained as 0.884 with 0.167
SD and median 0.978 (N � 17), whereas p(PH�data) equals 1 �
p(EH�data) and therefore had a mean of only 0.116.

Furthermore, data points for which A1 /C1 and A2 /C2 were
approximately equal (i.e., data points in the middle sections of the
plots in Fig. 4) were in general below the fitted iso-firing-rate
curve of the pressure hypothesis instead of scattered around it as
would be expected if the deviations resulted from independent
measurement errors. We investigated this trend by a run test for
those fits of the model that had at least 10 df (i.e., 12 data points).
For these nine cells, the run test showed significant deviations
(p � 0.01) from the pressure hypothesis in three cases. All three
cells were different from those that had led to statistically signif-
icant deviations from the pressure hypothesis according to the 	2

test. For the energy hypothesis, such a trend was not observable.
From the combined evidence, we conclude that the amplitude

as well as the pressure hypotheses can be rejected. The energy
hypothesis, on the other hand, provides a good description of the
data for spectral integration in the two-tone case.

The values obtained for the filter constants corresponding to
the energy hypothesis can be read from the graphs in Figure 4 as

Figure 4. Iso-firing-rate curves for super-
positions of two pure tones for four dif-
ferent receptor cells ( A–D). The mea-
sured pairs of amplitudes corresponding
to a firing rate of 150 Hz (small filled
circles) are shown together with the iso-
firing-rate curves for the three hypothe-
ses. For each curve, the two free parame-
ters C1 and C2 were fitted to the data. The
dashed lines denote the fits of the am-
plitude hypothesis, the solid lines denote
the fits of the energy hypothesis, and the
dash-dotted lines denote the fits of the
pressure hypothesis. Although the curves
for the amplitude and the pressure hy-
pothesis deviate systematically, the ellipse
obtained from the energy hypothesis cor-
responds well with the data. Note the dif-
ferent scales on the axes between the four
cells as well as between the x-axis and the
y-axis of individual plots. These differ-
ences are attributable to the strong depen-
dence of the sensitivity on the sound fre-
quency and the specific cell. From the fits
of the energy hypothesis, we obtain the
following ratios C1 /C2 in these four cases:
0.33 (A), 28.33 (B), 0.39 (C), and 7.96
(D). Although there is an almost 30-fold
difference (corresponding to �30 dB) be-

tween the amplitudes of the two tones in B, they contribute equally to the firing rate of the neuron. Also note that in A the amplitudes of the pure tones
giving a firing rate of 150 Hz were measured twice (at the beginning and the end of the experiment), with the results approximately coinciding.
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the half-axes of the ellipses, i.e., as the intersection points of the
ellipses with the two coordinate axes. Values range from �1 to
2000 mPa, corresponding to the large variability in overall sensi-
tivity of the receptors. As stated in Materials and Methods, the
filter constants are determined only up to a common factor. Their
ratios are, however, a direct measure of the relative sensitivity for
the two chosen sound frequencies. In our experiments, we found
ratios of C1 and C2 of up to 30:1 (Fig. 4B), which means that
spectral integration can be accurately determined even if the
sensitivities for the two sound frequencies diverge by as much as
30 dB and possibly more.

We also see from Figure 4 that the initial estimates of C1 and
C2 (taken from the pure-tone rate-intensity functions; see Mate-
rials and Methods) are already very close to the values obtained
by the fit of the energy hypothesis. The initial estimates for C1

and C2 are given by the data points on the coordinate axes and
closely coincide with the intersection points of the ellipses. This
shows that the filter constants measured with pure tones are
approximately the same as those obtained from fitting the energy
hypothesis to all data points.

As an additional test of the energy hypothesis, we investigated
how iso-firing-rate curves that were obtained separately for dif-
ferent firing rates are related to one another. Figure 5 shows pairs
(A1 , A2 ) corresponding to several firing rates between 100 and
200 Hz. Pairs corresponding to the same firing rate are accurately
fitted by ellipses. Each ellipse corresponds to an independent fit
to the data points of the same firing rate. To good approximation,
all ellipses are scaled versions of one another. This result is in
accordance with the energy hypothesis, because the ratio of the
half-axes of the ellipses should always equal the ratio of the filter
constants C1 and C2. Such a behavior was observed for all cells
measured. For each cell, we determined the ratios R100 and R150

of half-axes of the ellipses corresponding to 100 and 150 Hz,
respectively, and their relative deviations �(R150 � R100 )/R150�.

We found that with a mean of 0.044 (SD 0.026), these were always
small.

Analysis of specific response episodes
Up to now, we have disregarded the fact that the spike-train
responses contain a pronounced transient attributable to adapta-
tion. Typical spike trains from receptor cells for 300 msec pure-
tone stimuli and the corresponding instantaneous firing rates can
be seen in Figure 6, A and E. The transient usually spans approx-
imately the first 40 msec but can last as long as 100 msec.
Afterward, the cell has adapted to the sound intensity, and the
response is approximately in a stationary steady state for the rest
of the stimulus duration. When the stimulus ends, the receptor
cells do not show an offset response, but stop firing or return to
their usually low spontaneous activity. To investigate how the
transients influence our model description, we explicitly analyzed
the validity of the hypotheses for the onset as well as the steady-
state response.

Spike trains from 10 cells were recorded with stimuli of either
300 msec (in 6 cases) or 500 msec duration (in 4 cases). The same
analysis as before was applied to the onset by using only the first
30 msec of the response and to the steady state by disregarding
the first 200 msec after stimulus onset. Two examples are shown
in Figure 6. In each case, the data points are best fitted by the
ellipses from the energy hypothesis. We again performed a sta-
tistical analysis of the goodness of fit. Longer stimulus durations
resulted in fewer measurements per cell so that the data points
often had larger experimental errors. This effect is even stronger
for the analysis of the onset response, which relies on considerably
shorter stretches of data. Nevertheless, the data from two cells
during steady state deviated significantly (p � 0.05) from the
pressure hypothesis, whereas the energy hypothesis always gave a
good fit. Furthermore, the Bayesian test favored the energy hy-
pothesis over the pressure hypothesis strongly for both onset and
steady state [p(EH�data) for onset response: mean 0.642 with
0.100 SD, median 0.649; p(EH�data) for steady state: mean 0.795
with 0.131 SD, median 0.782; N � 10]. We conclude that the
energy hypothesis yields an appropriate description also for the
specific episodes of the response.

We may now use our description of spectral integration to
investigate a possible dependence of the adaptation on the sound
frequency. Adaptation mechanisms in mechanoreceptors have
been identified for stimulus coupling (Eyzaguirre and Kuffler,
1955; Chapman et al., 1979), transduction (Ricci et al., 1998; Holt
and Corey, 2000), and encoding (Matthews and Stein, 1969;
Purali and Rydqvist, 1998). For insect mechanoreceptors, spike
adaptation in the encoding stage often seems to be the dominant
source (French, 1984a, 1984b). The fact that the time constants of
adaptation depend strongly and systematically on the firing rate
for locust auditory receptors also indicates that spike adaptation
is an important mechanism (Benda, 2002). Because spike adap-
tation takes place after spectral integration, it is independent of
the sound frequency. Our model description is not affected by
such a frequency-independent adaptation as long as we focus on
a fixed response episode. The number of spikes occurring during
such an episode is still a function of the effective sound intensity,
although the distribution of the spikes may display a certain
structure within the response. For different response episodes, the
decrease in the firing rate over time is simply reflected in an
increase of the filter constants C1 and C2 by a common factor,
which could also be absorbed in the function r(J). In particular,

Figure 5. Iso-firing-rate curves for superpositions of two pure tones for
one receptor cell at different firing rates. The points display measured
pairs of amplitudes, and the solid lines are corresponding ellipses fitted to
the data in accordance with the energy hypothesis. The firing rates rise
from 100 to 200 Hz in steps of 25 Hz. Note that the fits agree with the data
regardless of the firing rate and that ellipses for different firing rates are
scaled versions of each other as predicted by the energy hypothesis. The
ratios of C1 /C2 lie in the narrow range between 0.177 and 0.185 for all five
firing rates.
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the ratios R � C1 /C2 of the filter constants for the onset, RO , and
the steady state, RS , should be the same.

The development of the firing rates in Figure 6 shows that the
transient parts of the response are generally similar and that they
have approximately the same time constant independent of sound
frequency. For the cell that is depicted in the right column of
Figure 6, though, the firing rates for the two sound frequencies
clearly differ in the first 30 msec. This indicates that, on short time
scales, the adaptation dynamics can depend on sound frequency,
which implies an adaptation mechanism within the coupling or
transduction processes. For our model description, such a phe-
nomenon results in a difference between RO and RS. This can be
observed, e.g., in the right column of Figure 6, where the ellipses
for the onset (Fig. 6F) and steady state (Fig. 6G) have different
shapes.

We analyzed this effect quantitatively for the 10 investigated
cells by determining the relative change �R � �RO � RS�/RS. We
found values of �R between 1 and 25%, which must be compared
with the error measures for the values of R of �10%. Half of the
cells had a �R value that was larger than their noise level. The cell
depicted in the right column of Figure 6 showed the largest �R of
the 10 cells. The total values of the filter constants C1 and C2 , on
the other hand, change between onset and steady state by 10–
50%, with error measures of 5–10%. We conclude that all cells
that we analyzed were affected by adaptation and that in some
cells, a small fraction of the adaptation phenomenon might be
attributed to frequency-dependent mechanisms. These frequency-
dependent effects are restricted to approximately the first 30
msec. Analyzing the time window from 40 to 70 msec after
stimulus onset, e.g., gives very similar ratios of C1 and C2 as for
the steady state. Consequently, the frequency-dependent changes
are negligible for the model description of the average response to
longer stimuli. For example, the area between the two firing rate
curves in the first 30 msec of Figure 6E (bottom), which denotes
the difference in spike count attributable to the frequency depen-
dence, corresponds to only �2% of the total spike count. For the
remaining part of this study, we therefore use the full responses
to 100 msec stimuli, for which it is easier to collect a sufficient
amount of data in the limited recording time.

Figure 6. Responses and iso-firing-rate curves for two cells with stimuli
of 300 msec. Each of the two columns (A–D and E–H, respectively) depicts
results from a single cell. A and E show four typical spike trains in
response to pure tones with frequencies f1 � 4.00 kHz (top) and f2 � 9.55
kHz (middle) as well as the corresponding instantaneous firing rates

4

(bottom). The sound frequency in kilohertz and the intensity in decibels of
the stimulus as well as the elicited firing rate in hertz are indicated in the
boxes to the lef t of the spike trains. The sound intensities for which the
responses are shown were chosen such that the average firing rates
approximately coincided for the two sound frequencies. The duration of
the stimuli is denoted by the thick bars. The instantaneous firing rates
were calculated by averaging over the inverse interspike intervals at each
point in time and subsequently smoothed with a Gaussian of 2 msec SD.
One observes a strong transient in the first 30–100 msec. In addition, the
cell depicted in E–H exhibited a slightly reduced firing rate in the first few
milliseconds for the 4 kHz tone compared with the 9.55 kHz tone. B–D
and F–H show iso-firing-rate data and fits of the three hypotheses for the
two cells obtained from different episodes of the responses. The time
window used for the analysis is denoted in each of the panels. B and F
capture the onset response of the first 30 msec. C and G refer to the steady
state, and D and H refer to the total response. The ellipses corresponding
to the energy hypothesis (solid lines) lead to notedly better fits of the data
than the curves for the amplitude hypothesis (dashed lines) and the
pressure hypothesis (dash-dotted lines), regardless of the analyzed re-
sponse window. For the cell illustrated in the right column, the ellipse for
the onset response ( F) has a half-axes ratio, RO � 0.63, that differs by
�25% from that for the steady state (G), RS � 0.84, and by �15% from
that for the total response (H), Rtotal � 0.74. On the other hand, the
half-axes ratios for the cell in the lef t column vary by �5% (RO � 4.51,
RS � 4.55, and Rtotal � 4.36).
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Superpositions of three pure tones
To see whether the findings from the two-tone experiments
generalize to sounds with more complex frequency spectra, re-
sponses to superpositions of three pure tones were analyzed. We
applied the same approach as for the two-tone experiments with
100 msec stimuli and identified iso-firing-rate surfaces in the
three-dimensional subspace (A1 , A2 , A3 ). The three hypotheses
yield predictions about these surfaces in the form of a plane
(amplitude hypothesis), an ellipsoid (energy hypothesis), and a
more strongly bent surface (pressure hypothesis) the exact shape
of which has to be determined numerically.

Responses to superpositions of three pure tones were measured
for eight cells. From the rate-intensity functions, we determined
amplitude triplets corresponding to a firing rate of 150 Hz. Figure
7 illustrates the results for one cell and also shows the fitted
ellipsoid corresponding to the iso-firing-rate surface of the energy
hypothesis. We applied a 	2 test and found that the amplitude
hypothesis is rejected at the 1% level for all eight cells, whereas
the energy hypothesis is rejected for one cell and the pressure
hypothesis is rejected for four cells. We again compared the fits
for the energy and the pressure hypothesis in more detail. In all
cases, the energy hypothesis gave a lower 	2 than the pressure
hypothesis, and the Bayesian estimate of the probability of the
model given the data again strongly favored the energy hypoth-
esis over the pressure hypothesis [mean of p(EH�data) was 0.916
with 0.109 SD, median 0.987, N � 8]. Thus, spectral integration
for three pure tones is also best described by the energy hypoth-
esis, whereas the amplitude and the pressure hypothesis are
rejected by the data.

Comparison of pure-tone and noise stimuli
So far we have found that the energy hypothesis describes spectral
integration of mixtures of two and three pure tones. We now pose
the question whether this hypothesis also applies to stimuli com-
posed of many frequencies. In particular, we aim at predicting the
response to a bandpass-filtered Gaussian white noise based on the
knowledge of the filter constants Cn and a pure-tone rate-
intensity function. Spike-train responses to the noise stimulus
have the same structure as responses to pure-tone stimulation
(data not shown). We therefore again focus on the firing rate and
measure rate-intensity functions for the noise stimulus. Our
model predicts that these should have the same shape as the
pure-tone rate-intensity functions (see Materials and Methods).
The expected distance �I between the two rate-intensity func-
tions can be calculated if the filter constants and the power
spectrum of the noise stimulus are known. The values for the
energy hypothesis, �IEH , and the pressure hypothesis, �IPH , are
given in Equations 10 and 11.

The pure-tone stimulus has a frequency of 4 kHz, and the noise
stimulus is bandpass filtered between 5 and 10 kHz, a region in
which many receptors are most sensitive. Rate-intensity functions
for these two types of stimuli were measured for 10 cells. In
addition, filter constants in the range of 5–10 kHz were deter-
mined independently by measuring the amplitudes of pure tones
leading to a firing rate of 260 Hz. Figure 8 shows rate-intensity
functions for the pure-tone as well as the noise stimulus together
with the predictions that are obtained from shifting the pure-tone
rate-intensity functions by �IEH. In each case, the two measured
rate-intensity functions are almost identical in shape, as expected
from the model. Furthermore, the measured noise-stimulus rate-
intensity function and the shifted pure-tone rate-intensity func-
tion coincide closely in most cases. Note that only results from
pure-tone stimulation are used for the prediction of the noise-
signal responses. To assess the results quantitatively, we calcu-
lated the deviation of �IEH from the actual distance between the
rate-intensity functions, �Itrue , in each case. For the energy
hypothesis, �IEH � �Itrue has a mean of �0.62  0.68 dB (SE).
The spread of these data (SD of 2.16 dB) corresponds to the
expected measurement accuracy, which can be estimated to be
�2 dB; the determination of Cpt, the collection of Cn , and the
locations of both rpt(I) and rnoise(I) all contribute independently
with �1 dB error range. The pressure hypothesis yields �IPH �
�Itrue with a mean of 0.43  0.68 dB (SE) and is thus not ruled
out by this experiment.

The results suggest that the description of spectral integration
by the energy hypothesis, as derived from the two- and three-tone
experiments, is also applicable to more complex stimuli. The
model can be used for an accurate prediction of the location of
the rate-intensity function after measuring the filter constants
from pure-tone responses. The predictability of actual firing rates,
however, is limited by the steepness of the rate-intensity func-
tions. Because the range between threshold and saturation usually
spans only �15–30 dB, small inaccuracies of a few decibels about
the prediction of the shift between the rate-intensity functions
have a strong effect on individual firing-rate predictions.

DISCUSSION
Spectral integration is an important feature of auditory encoding
and is closely connected to the mechanosensory transduction
process. Our data show that the response of locust auditory
receptor cells to stationary sound stimuli is determined by an
“effective sound intensity” J that can be calculated from the

Figure 7. Iso-firing-rate surface for superpositions of three pure tones
for one receptor cell. Amplitude triplets resulting in a firing rate of 150
Hz are shown as filled circles. The three-dimensional mesh displays an
ellipsoid with the three half-axes fitted to the data and illustrates the
prediction for the iso-firing-rate surface from the energy hypothesis. The
filter constants obtained from the fit are C1 � 0.172 Pa, C2 � 0.186 Pa, and
C3 � 1.88 Pa. For optical guidance, the measured points are connected to
the origin of the coordinate system by dotted lines. The intersection points
of these lines with the ellipsoid are portrayed by open circles on the
ellipsoid. For clarity, the iso-firing-rate surfaces corresponding to the
amplitude and pressure hypotheses are not shown.
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stimulus spectrum and the sensitivity of the receptor at different
sound frequencies. The sound-intensity coding of the receptor
cells can thus be described in a three-step process. First, the
tympanal membrane acts as a linear filter. The relevant charac-
teristics of the filter can be determined using pure-tone stimuli by
measuring which intensities correspond to a given firing rate of
the receptor. Second, the effective sound intensity J is obtained by
summing up all energies contained in the individual frequency
components of the filtered signal. We believe that this summation
reflects the dynamic properties of the mechanosensory transduc-
tion channels. Ultimately, a biophysical investigation is required
to confirm this view. In a final step, the effective sound intensity
is put through a nonlinear response function independent of the
spectral contents of the original signal. The shape of this response
function can be derived from the measurement of a single rate-
intensity function with arbitrary but fixed spectral content.

Alternative hypotheses that compute J as the maximum ampli-
tude or the integrated pressure are rejected by the analysis of the
responses of the receptors to superpositions of two or three pure
tones. Although the amplitude hypothesis can be clearly dis-
carded, the energy and pressure hypotheses are more similar in
their predictions regarding spectral integration. However, the
combined evidence from several statistical investigations demon-
strates that the pressure hypothesis fails in several single cases
and that the energy hypothesis provides a far better description of
the data.

Comparison between responses to pure tones and bandpass-
filtered noise shows that the energy hypothesis also accounts for
the responses to more complex stimuli. The model can therefore
be used to accurately predict the rate-intensity functions for
noise-like signals.

Effects of stimulus onset and adaptation
A more detailed analysis reveals that the energy hypothesis also
describes spectral integration for the onset and the steady-state
responses individually. The model parameters depend on the
response episode investigated. The main effect is a change in the
filter constants by a common factor attributable to spike-
dependent adaptation. For a generalization of the model to
fluctuating stimuli, this dependence of the parameters on the
adaptation state could be explicitly incorporated, e.g., by using the
generic model of (Benda et al., 2001; Benda, 2002). In some cells,
changes in the ratio of the filter constants between onset and steady
state suggest additional, although smaller sound-frequency-
dependent dynamics of the adaptation. Besides the dominant spike
adaptation, there might thus be a second adaptation phenomenon,
which occurs before spectral integration. It might be caused by
either a mechanical effect of the vibrations of the tympanum and

Figure 8. Comparison of the predictions for a noise-signal rate-intensity
function with the actual measurement. A, Predicted and measured rate-
intensity functions. The squares connected by the dotted line depict a
rate-intensity function for a 4 kHz tone measured for one receptor cell.
Using the energy hypothesis and the measured filter constants Cn , a
prediction for the rate-intensity function of a noise signal (bandpass
filtered between 5 and 10 kHz) is derived (solid line). It is obtained by
shifting the pure-tone rate-intensity function by an intensity �IEH � 12.1
dB as indicated by the arrow. The measured firing rate of the receptor cell
in response to the noise signal is shown by the circles. Data and model
prediction agree well in both the overall shape of the rate-intensity
function and the location on the intensity axis. The true shift between the
measured rate-intensity function is estimated as �Itrue � 12.6 dB. B,
Determination of filter constants. The filled circles depict the measured
intensities for pure tones between 4 and 10 kHz that led to a firing rate of
260 Hz in each case. These data were used to determine the filter
constants Cn for the 4 kHz pure tone as well as for the range from 5 to 10
kHz. Further filter constants in this range were obtained by linear inter-
polation of this curve. C, The response function r(JEH ) as determined by
the rate-intensity function for the 4 kHz tone. The same firing rates that
result in the squares in A are plotted against the effective sound intensity

4

JEH of the energy hypothesis. JEH is given by 1⁄2 � A 2/C 2, where A denotes
the amplitude of the pure tone and C denotes the filter constant, which is
determined by the intensity of the pure tone that drives the cell at 260 Hz.
Although the pure-tone rate-intensity function displayed in A has a large
nearly linear section from �40 to 60 dB SPL, the response function r(JEH )
is clearly nonlinear in the corresponding region (from JEH � 0.08 to JEH �
8) and resembles a square-root function. D–G, Predicted and measured
rate-intensity functions for the noise signal from four other cells. Symbols
are used as in A. Note the different scales on the axes. Accordingly, the
slopes of the rate-intensity functions differ considerably from cell to cell,
but for a single cell, they are almost identical for pure-tone and noise
stimulation. The values for �IEH and �Itrue in these four cases are D,
�IEH � 9.0 dB, �Itrue � 9.8 dB, E, �IEH � 12.1 dB, �Itrue � 11.8 dB, F,
�IEH � 7.8 dB, �Itrue � 6.6 dB, G, �IEH � 14.9 dB, �Itrue � 18.4 dB.
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associated structures or a property of the transduction channels.
Because the effect is generally small and restricted to the first 30
msec, it can be neglected for the description of the average re-
sponse to longer stimuli, which was the focus of the present study.

Conceptual framework
Combining the two concepts “spectral integration” and “iso-
firing-rate regions” allowed us to rigorously compare different
transduction models. A key ingredient in the experimental pro-
cedure was the systematic exploration of regions of constant
activity under variation of the stimulus composition, in the
present case the spectrum of a sound signal. Investigating such
regions implies a change of the traditional perspective regarding
neural input–output relations. Instead of asking what output is
produced by a given input, one seeks to identify input ensembles
that are associated with a fixed output. Reliable on-line analysis
and automatic feedback to the stimulus generation are a central
aspect of this approach. Based on increasingly available high-
speed computing power, the method could be easily extended to
identify more general invariant regions in auditory and other
stimulus domains.

Our framework may be compared with the technique of silent
substitution (Estévez and Spekreijse, 1982), in which the spectral
composition of a visual stimulus is varied systematically such that
the resulting stimuli always lead to the same activity of one (or
more) receptor types in the retina. Fluctuations in visually
evoked potentials can then be interpreted as being caused by the
remaining receptors. In this case, however, the iso-activity re-
gions of the receptors are not explored, but must be known
accurately beforehand, and they are not compared with alterna-
tive model predictions.

Comparison with studies of temporal integration in
other auditory systems
Our results go along well with the fact that temporal energy
integration describes firing thresholds for double-click and
intensity-duration trade-off experiments in receptor cells of
moths (Tougaard, 1996, 1998). If this finding can also be con-
firmed for locust auditory receptors, spectral and temporal inte-
gration could be combined in a single simple model. Trade offs
between intensity and duration would then be expected to occur
for stimuli on time scales of a few milliseconds, the apparent
integration time of the receptors, which is well below the stimulus
durations used in this study. In mammalian auditory nerve fibers,
on the other hand, first-spike latencies correspond to the inte-
grated pressure and not the energy (Heil and Neubauer, 2001). It
is possible that this is caused by a fundamental difference in the
transduction mechanisms of hair cells and insect auditory recep-
tors. However, latency measurements reflect properties of the
transduction as well as properties of additional dynamic pro-
cesses, such as synaptic transmission, internal calcium dynamics,
and spike generation. In this context, it should be noted that the
latency in type I excitable membranes depends strongly and
nonlinearly on the input strength (Hodgkin, 1948; Rinzel and
Ermentrout, 1998; Izhikevich, 2000). This opens up the possibility
that properties of the spike generator alter the effective input in
such a way that energy integration is in accordance with the
observed correspondence between latency and the temporal pres-
sure integral. In fact, Ermentrout (1996) showed that in type I
membranes, the firing rate r to a constant stimulus S above the
firing threshold S* approximately obeys the square-root relation
r(S) � �S � S*. For a simplified phase-integrator model (Hop-
pensteadt, 1997), the latency �t is then given by the condition that

the integral �0
�t�S(t) � S* dt reaches a threshold value. Accord-

ing to the energy hypothesis, S is proportional to the square of the
pressure amplitude A of a pure tone and in most cases large
compared with S*. This cancels the square root, thus resulting in
the latency condition �0

�tA(t)dt � const, the dominant component
of the model proposed by Heil and Neubauer (2001). The above
considerations may also explain the apparent discrepancy between
the latency measurements and the fact that psycho-acoustic studies
successfully apply energy-integration models (Garner, 1947;
Plomp and Bouman, 1959; Zwislocki, 1965; Florentine et al., 1988).
Further experiments are needed to decide this, however.

Response properties of hair cells and mammalian auditory
nerve fibers are complicated by mechanical nonlinearities in-
duced by the cochlea and a more intricate signal pathway than is
the case in insect auditory systems. Nevertheless, measurements
of basilar-membrane vibrations indicate that outside a region
around the characteristic frequency, the stimulus coupling to
mammalian auditory receptors occurs in an approximately linear
fashion (Eguı́luz et al., 2000; Ruggero et al., 2000). This suggests
that a phenomenological study along the lines of the present
investigation might also reveal interesting properties of the trans-
duction process in hair cells.

Implications for the locust auditory system
Practical implications of our results include a more reliable char-
acterization of insect auditory receptor sensitivity by measuring
the intensities necessary to provoke a given non-zero firing rate
instead of the threshold curve. The latter is notoriously difficult to
measure because the rate-intensity functions usually flatten out
near the threshold and are corrupted by background activity
(Michelsen, 1971c). At least in locust receptor cells, the threshold
curve runs approximately parallel to any other curve of equal
response, and a single additional rate-intensity function can de-
termine the distance between the measured curve and the actual
threshold curve. Furthermore, our results show that average re-
sponses of an auditory receptor to complex stimuli can be well
predicted once the cell-specific effective sound intensity J has
been measured. The resulting quantitative correspondence be-
tween the stimulus spectrum and the firing rate differs from the
predictions of an earlier heuristic approach (Lang, 2000). Our
result will thus be helpful for systematic investigations of the
processing of natural communication signals, such as grasshopper
calling songs (Machens et al., 2001).

Linear versus nonlinear models
The simplicity of our model, which is linear up to a final static
nonlinearity, is consistent with the fact that previous studies have
found no indications of dominant nonlinearities or active move-
ment of the sensory cilia (cf. Eberl, 1999). Distortion-product
otoacoustic emissions from locust ears indicate slight nonlineari-
ties at the tympanal membrane, but only at �50 dB below the
stimulating intensities (Kössl and Boyan, 1998). Many other
auditory systems, on the other hand, are strongly affected by
nonlinear mechanisms and active signal amplification leading
to increased sensitivity and frequency resolution. This phe-
nomenon is common in vertebrate ears (Fettiplace and Fuchs,
1999; Hudspeth et al., 2000) but has also been shown to exist in
some insect auditory systems (Göpfert and Robert, 2001).

Implications for other mechanosensory systems
It can be speculated that the nonlinearities mentioned above are
additional features on top of the same underlying mechanosen-
sory transduction process. Recent findings of structural and func-
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tional similarities between hair cells and the Drosophila sensory
bristle as well as the discovery in Drosophila of homologs of
mammalian genes related to hearing and deafness support this
view and suggest that many aspects of mechanosensory transduc-
tion among insects and vertebrates are conserved (Adam et al.,
1998; Bermingham et al., 1999; Eberl, 1999; Fritzsch et al., 2000;
Walker et al., 2000; Gillespie and Walker, 2001). The energy
hypothesis might thus be extended to account for spectral inte-
gration in other mechanosensory systems as well, possibly after
modifications that take the system-specific nonlinearities explic-
itly into account.

Mechanosensory transduction is also involved in a wide range
of other senses, including touch, proprioception, and the sense of
balance. Unlike transduction mechanisms that involve second-
messenger signaling suited for biochemical analysis, mechanosen-
sory changes of the membrane conductance result from a direct
coupling with the mechanical stimulus: stretch, compression of
the cell, or deflection of associated processes or cilia (Corey and
Hudspeth, 1979; Hudspeth, 1985; Hudspeth and Logothetis,
2000). This direct and fast electrophysiological response has so far
resisted a detailed biophysical analysis (Gillespie, 1995). Our
method of finding regions of constant neural response for varying
spectral composition provides a novel approach for distinguishing
between different hypotheses about receptor integration, sets
quantitative constraints that any future biophysical model has to
satisfy, and is applicable to a wide range of other (mechano)sen-
sory systems.

APPENDIX: CALCULATION OF THE INTENSITY SHIFT
BETWEEN PURE-TONE AND NOISE SIGNALS
We denote the effective sound intensities of the noise signal by
JEH

noise and JPH
noise and the effective sound intensities of the pure-

tone signal by J EH
pt and JPH

pt according to the energy and pressure
hypotheses, respectively. The intensity in the decibel SPL scale is
defined as:

I � 20log10

�	S�t�2


A0
, (21)

with A0 � 20 �Pa. For the noise signal:

Snoise�t� � �
n

An sin�2�fnt � �n�, (22)

the root-mean-square is obtained as:

�	S�t�2
 � �1
2 �

n

An
2 , (23)

which implies that the intensity is given by:

Inoise � 20log10

�1
2 �n An

2

A0
. (24)

The effective sound intensity of the energy hypothesis, Equation
17, can thus be written as:

J EH
noise �

1
2 �

n

An
2

Cn
2 � 10Inoise/10 � A0

2 �
�n An

2 /Cn
2

�n An
2 , (25)

where the dependence on the intensity is given explicitly because
the term

� An
2

Cn
2�An

2

is invariant to intensity changes.
For J PH

noise, we note that the values of S̃(t) are distributed
according to a Gaussian distribution with variance �2 that is
given by:

�2 �
1
2 �

n

An
2

Cn
2 � J EH

noise . (26)

For a Gaussian distribution with SD �, the mean of the absolute
value can be calculated as

	�S̃�t��
 � � 2
�

� �,

and we therefore obtain from Equation 18:

J PH
noise � � 2

�
� J EH

noise � � 2
�

� 10I noise/ 20 � A0 � ��n An
2 /Cn

2

�n An
2

. (27)

Equivalently, we find for the pure-tone stimulus Spt(t) � Apt

sin(2�ft):

J EH
pt �

1
2

�
Apt2

Cpt2 � 10Ipt/10 �
A0

2

Cpt2 , (28)

J PH
pt �

2
�

�
Apt

Cpt �
2�2

�
� 10Ipt/20 �

A0

Cpt , (29)

where Cpt denotes the filter constant for the pure tone. These
latter relationships can be inverted to yield Ipt as a function of Jpt.
Because equal J implies equal firing rate, we can then substitute
Jpt by Jnoise to obtain that intensity of the pure tone that leads to
the same firing rate as a given intensity of the noise signal:

rEH
noise�I noise� � r EH

pt �10log10��Cpt�2

A0
2 � J EH

noise��
� r EH

pt �I noise � 10log10��Cpt�2 �n An
2 /Cn

2

�n An
2 ��, (30)

rPH
noise�I noise� � r PH

pt �20log10� �

2�2
�

Cpt

A0
� J PH

noise��
� r PH

pt �I noise � 10log10��

4
�Cpt�2�n An

2 /Cn
2

�n An
2 ��. (31)

From these formulas, we can directly read out �I for the two
hypotheses by comparison with Equation 8.
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