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Modeling Single-Neuron Dynamics
and Computations: A Balance of
Detail and Abstraction
Andreas V. M. Herz,1* Tim Gollisch,2 Christian K. Machens,3 Dieter Jaeger4

The fundamental building block of every nervous system is the single neuron. Understanding how
these exquisitely structured elements operate is an integral part of the quest to solve the mysteries
of the brain. Quantitative mathematical models have proved to be an indispensable tool in
pursuing this goal. We review recent advances and examine how single-cell models on five levels of
complexity, from black-box approaches to detailed compartmental simulations, address key
questions about neural dynamics and signal processing.

A
hundred years ago, Lapicque (1) pro-

posed that action potentials are gen-

erated when the integrated sensory or

synaptic inputs to a neuron reach a threshold value.

This Bintegrate-and-fire[ model remains one of the

most influential concepts in neurobiology because

it provides a simple mechanistic explanation for

basic neural operations, such as the encoding of

stimulus amplitude in spike frequency. However,

advances in experimental technique have shown

that the integrate-and-fire model is far from

accurate in describing real neurons. Their mor-

phology, composition of ionic conductances, and

distribution of synaptic inputs generate a plethora

of dynamical phenomena and support various fun-

damental computations (Table 1 and Table 2).

Understanding the dynamics and computa-

tions of single neurons and their role within

larger neural networks is therefore at the core of

neuroscience: How do single-cell properties

contribute to information processing and, ulti-

mately, behavior? Quantitative models address

these questions, summarize and organize the

rapidly growing amount and sophistication of

experimental data, and make testable predictions.

As single-cell models and experiments become

more closely interwoven, the development of data

analysis tools for efficient parameter estimation

and assessment of model performance constitutes

a central element of computational studies.

All these tasks require a delicate balance

between incorporating sufficient details to ac-

count for complex single-cell dynamics and

reducing this complexity to the essential charac-

teristics to make a model tractable. The appro-

priate level of description depends on the

particular goal of the model. Indeed, finding the

best abstraction level is often the key to success.

We highlight these aspects for five main levels

(Fig. 1) of single-cell modeling.

Level I: Detailed Compartmental Models

Morphologically realistic models are based on

anatomical reconstructions and focus on how the

spatial structure of a neuron contributes to its

dynamics and function. These models extend the

cable theory of Rall, who showed mathematically

that dendritic voltage attenuation spreads asym-

metrically (2). This phenomenon allows dendrites

to compute the direction of synaptic activation pat-

terns, and thus provides a mechanism for motion

detection (3). When voltage-dependent conduct-

ances are taken into account, numerical integration

over the spatially discretized dendrite—the ‘‘com-

partmental model’’ (3)—is needed to solve the

resulting high-dimensional system of equations.

For complex dendritic trees, more than 1000

compartments are required to capture the cell’s

specific electrotonic structure (e.g., to simulate

spike backpropagation in pyramidal neurons) (4).

Such detailed models also generate testable

mechanistic hypotheses. For instance, simula-

tions of Purkinje cells predicted that a net

inhibitory synaptic current underlies specific

spike patterns in vivo (5), in accordance with

later experimental findings (6). In turn, even

established models such as the thalamocortical

neuron (7) are constantly improved by adding

new biophysical details such as dendritic calci-

um currents responsible for fast oscillations (8).

A large body of morphologically realistic mod-

els demonstrates how spatial aspects of synaptic

integration in dendrites support specific computa-

tions (Table 1 and Table 2), as discussed in

various reviews (9, 10). In pyramidal cells, for ex-

ample, distal inputs are amplified via dendritic

spikes or plateau potentials, supporting local

coincidence detection and gain modulation. Den-

dritic inward currents play a major role in the

control of spiking (6) or the modulation of re-

sponses to synchronous inputs (11). Such inter-

actions among synaptic inputs, voltage-gated
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Fig. 1. Examples for five levels of single-cell
modeling. Level I: Detailed compartmental model
of a Purkinje cell. The dendritic tree is segmented
into electrically coupled Hodgkin-Huxley–type com-
partments (level III). Level II: Two-compartment
model as in (23). The dendrite receives synaptic
inputs and is coupled to the soma where the
neuron’s response is generated. Level III: Hodgkin-
Huxley model, the prototype of single-compartment
models. The cell’s inside and outside are separated
by a capacitance Cm and ionic conductances in
series with batteries describing ionic reversal
potentials. Sodium and potassium conductances
(gNa, gK) depend on voltage; the leak gleak is fixed.
Level IV: Linear-nonlinear cascade. Stimuli S(t) are
convolved with a filter and then fed through a
nonlinearity to generate responses R(t), typically
time-dependent firing rates. Level V: Black-box
model. Neglecting biophysical mechanisms, condi-
tional probabilities p(R|S) describe responses R for
given stimuli S.
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conductances, and spiking output can be specifi-

cally affected by dendritic branching structures

(12); axonal geometries, on the other hand,

influence activity-dependent branch point failures

and may thus implement filter and routing opera-

tions on the neuron’s output side (13).

Finally, detailed spatial representations help

predict the effects of extracellular electrical

stimulations. This is of great interest for deep-

brain stimulation used in the treatment of

Parkinson’s disease (14) and underscores the

need for morphologically realistic models.

Level II: Reduced Compartmental Models

Although detailed compartmental models can

approximate the dynamics of single neurons quite

well, they suffer from several drawbacks. Their

high dimensionality and intricate structure rule out

any mathematical understanding of their emergent

properties. Detailed models are also computation-

ally expensive and are thus not well suited for

large-scale network simulations. Reduced models

with only one or few dendritic compartments

overcome these problems and are often sufficient

to understand somatodendritic interactions that

govern spiking (15) or bursting (16).

A well-matched task for such models is to

relate behaviorally relevant computations on

Table 2. Information processing in single neurons: Task-specific computations of direct behavioral relevance.

Biological goal Computation
Biophysical
mechanism

Model level
Experimental

systems

Collision avoidance Multiplication:
object size x times
angular velocity y

xy 0 exp(log x + log y) via
input nonlinearity (log),
dendritic summation (+), and
output nonlinearity (exp)

III Lobula giant
movement detector
in locusts (52)

Sound localization Logical AND: comparison
of interaural
time difference

Coincidence detection of two
spikes, lagged by different
axon delays (17, 18)

II Binaural neurons
in the auditory
brainstem (17)

Motion detection Logical AND or
AND-NOT: comparison
of spatially adjacent but
temporally shifted local
light intensities

Coincidence detection of one
lagged (axonal delay) and
one nonlagged spike (59)

Nonlinear dendritic
processing (3, 78)

IV

I, II

Peripheral neurons in
the fly visual system
[see, e.g., (59, 60)]

Retinal amacrine and
ganglion cells (79, 80)

Motion anticipation Linear filtering with
negative feedback

Adaptation of neuronal gain IV Salamander and rabbit
retinal ganglion cells (81)

Intensity-invariant
recognition of
analog patterns

Separation of
pattern identity and
pattern intensity;
subsequent comparison
with stored template

Transformation: local stimulus
intensity mapped to spike time
using subthreshold membrane
potential oscillations; readout:
coincidence detection (82)

III, IV Insect and vertebrate
olfactory neurons,
in particular in
antennal lobe and
olfactory bulb,
respectively (83)

Short-term memory Temporal integration or storage Dendritic Ca waves (20) II Layer V neurons in
entorhinal cortex (19)

Transitions between two
Ca-conductance states (21)

II Layer V neurons in
entorhinal cortex (21)

Time interval prediction Temporal integration or storage Calcium dynamics with
positive feedback (84)

III Climbing activity in
prefrontal neurons (85)

Redundancy reduction Subtraction: local
signal minus
background signal

Dendritic summation (3) IV Center-surround receptive
fields in the visual
system (57)

Efficient coding in
variable environment

Modification of
tuning curve to
track time-varying
stimulus ensemble

Adaptation of single-cell
input-output function (23, 58)

Consequence (60) of Reichardt
motion detector circuit (59)

II, IV, V

IV, V

Motion-sensitive H1
neuron in the
fly visual system (58, 60)

Table 1. Information processing in single neurons: Basic computations that follow from generic
neuronal properties.

Computation Biophysical mechanism Model level

Addition or subtraction Dendritic summation of excitatory and/or
inhibitory inputs (3)

I, II

Subtraction Shunting inhibition plus integrate-and-fire
mechanism (76)

I, II

Multiplication or division Synaptic interaction (67, )77 I, II
Gain modulation via synaptic

background noise (35, 36)
I, II

High-pass filter Firing rate adaptation (32) III
Low-pass filter Passive membrane properties (28) I, II, III
Toggle switch Bistable spike generation (30) III

SPECIALSECTION

www.sciencemag.org SCIENCE VOL 314 6 OCTOBER 2006 81

 o
n 

S
ep

te
m

be
r 

3,
 2

01
0 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org


various time scales to salient features of neural

structure and dynamics. For example, the detec-

tion of binaural time differences within Jeffress’

time-delay framework (17) has been explained in

a three-compartment model of bipolar cells by

local nonlinear input interactions and the fact

that each of the two dendrites provides a sink for

inputs received by the other dendrite (18). Com-

putations involving short-term memory may rely in

part on the existence of multiple stable firing rates

in single neurons. Reduced compartmental models

suggest that calcium currents are essential for this

phenomenon (19), through dendritic calcium

wavefronts (20) or transitions between different

conductance states (21). On longer time scales,

neurons self-adjust their activity patterns, both

during development and after external perturba-

tions (22). Simulations with a two-compartment

model show that such homeostatic plasticity can

follow from cellular ‘‘learning’’ rules that recal-

ibrate dendritic channel densities to yield optimal

spike encoding of synaptic inputs (23).

For large-scale network studies, reduced com-

partmental models offer a good compromise be-

tween realism and computational efficiency. For

example, a simulation involving several classes of

multicompartmental cortical and thalamic neurons

and a total of more than 3000 cells demonstrates

that gap junctions are instrumental for cortical

gamma oscillations (24). A slightly less complex

network with two-compartment neurons repro-

duces slow-wave sleep oscillations (25). Clearly,

the challenge for all such studies is to find the

least complex neuron models with which the

observed phenomena can still be recreated (26).

Level III: Single-Compartment Models

Single-compartment models such as the classic

Hodgkin-Huxley model (27) neglect the neuron’s

spatial structure and focus entirely on how its

various ionic currents contribute to subthreshold

behavior and spike generation. These models

have led to a quantitative understanding of many

dynamical phenomena including phasic spiking,

bursting, and spike-frequency adaptation (28).

Systematic mathematical reductions of

Hodgkin-Huxley–type models and subsequent

bifurcation and phase-plane analysis (29, 30)

explain why, for example, some neurons resemble

integrate-and-fire elements or why the membrane

potential of others oscillates in response to current

injections enabling a ‘‘resonate-and-fire’’ behavior.

They also show which combination of dynamical

variables governs the threshold operation (31)

and how adaptation (32) and spike-generation

mechanisms (33) influence spike trains (Fig. 2).

Spike generation is not a deterministic process.

The stochastic dynamics of ion channels generate

voltage noise that limits the reliability and pre-

cision of spikes (34). Background synaptic noise

(35), on the other hand, can modulate the neural

gain without changing spike variability or mean

firing rates (36). But even without intrinsic noise,

the all-or-none characteristics of spike generation

amplify the input variability (37)—perhaps this is

the price of long-distance communication.

More than 50 years after Hodgkin and

Huxley analyzed the squid axon, simple neuron

models still offer surprises, as these findings

show. A recent study even indicates that the

standard Hodgkin-Huxley formalism does not

explain the sharp kink at the onset of cortical

spikes (38). Its mechanistic origin and functional

consequences require further investigation.

Level IV: Cascade Models

Whereas models incorporating

specific ionic currents or morpho-

logical details are needed to in-

vestigate the biophysics of single

neurons, modeling on a more con-

ceptual level allows one to directly

address their computations. To this

end, cascade models based on a

concatenation of mathematical

primitives, such as linear filters,

nonlinear transformations, and

random processes, present an

excellent framework for distill-

ing key processing steps from mea-

sured data.

Consider, for example, a mod-

el that first convolves its time-

varying input with a linear filter

and then applies a rectifying non-

linearity. In studies of sensory

systems, this simple structure is

often considered as the canonical

model for the receptive field of

a neuron and the transformation

of its internal activation state

into a firing rate. The appeal of

this linear-nonlinear (LN) cas-

cade stems from its conceptual

simplicity and the fact that, for

white-noise stimulation, it can

be easily fitted to experimen-

tal data by correlating response

and stimulus (39). Recent studies

even demonstrate that LN cas-

cades can be obtained under

far more naturalistic stimulation

(40, 41).

Fig. 2. Diversity of neural response patterns. As illustrated in the top row, neurons can respond with rather different spike-
train patterns to identical step currents. For time-varying inputs (middle row), the computational power of even simple
single-neuron models becomes apparent: A first current pulse might trigger a subthreshold oscillation. Only if a second
pulse arrives at the right phase of this oscillation is a spike triggered through resonance. An integrator, on the other hand,
is driven most effectively by quickly succeeding pulses. Finally, a bistable cell can realize a toggle-switch. These
phenomena [and many more; see (30)] are exhibited by the same point-neuron model: Its time evolution (bottom row,
left) is derived from Hodgkin-Huxley–type dynamics; involves the membrane potential v and a slower auxiliary variable
u; and generates the different responses for specific values (right) of the parameters c (reset of voltage v with peak p)
and a, b, and d (decay rate, sensitivity, and reset of the auxiliary variable u). Figure courtesy of E. Izhikevich.
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Cascade models have a long tradition in the

investigation of the visual system. More recently,

they have been used to assess neuronal sensitivity

for different stimulus features and have helped to

elucidate the simultaneous adaptation to mean light

intensity and light contrast (42) and the generic

nature of adaptation in the retina (43). New

analysis tools have opened up the possibility of

using multiple parallel linear filters in an LN

cascade to investigate, for example, complex

cells in visual cortex (44) and thus improve on

classical energy-integration models (45).

Extending LN cascades allows one to capture

additional neural characteristics while retaining the

ability to fit these more complex models to ex-

perimental data. To reveal filter

mechanisms that are otherwise

hidden by spike-time jitter, one

may append a noise process to

the cascade (46, 47) or measure

spike probabilities instead of

spike times (48). For the latter

method, temporal resolution is

limited only by the precision of

stimulus presentation so that

parameters of more elaborate

models (e.g., LNLN cascades)

can be obtained.

The analog output of tradi-

tional cascade models describes

a firing rate. An important con-

ceptual extension is therefore

achieved by adding an explicit

spike generation stage. Using a

fixed firing threshold and feed-

back mimicking neural refrac-

toriness (49), this has led to a

successful model of spike timing

in early vision (50). Even when

augmented with an integrate-

and-fire mechanism and intrinsic

bursting, this model structure still

allows generic fits to measured

spike trains (51).

Cascade models can also

directly translate into specific

computations: Experiments in-

dicate that in locusts, an identi-

fied neuron multiplies the visual size x and

angular velocity y of an object while tracking

its approach (52). The nearly exponential shape

of this neuron’s output curve suggests that

logarithmic transforms of x and y are summed

on the dendrite and then passed through the

output nonlinearity, implementing the multipli-

cative operation as an NLN cascade via the

identity exp(log x + log y) 0 xy.

Despite their success, simple model structures

have their limitations—especially when applied

to neurons far downstream from the sensory

periphery and when aimed at generalizing over

different stimulus types—because additional

nonlinear dynamics, negligible within a specific

stimulation context, affect the transition between

different experimental conditions (53, 54). In

specific cases, however, LN models yield ac-

curate information-theoretical descriptions of

neuronal responses (55).

Level V: Black-Box Models

Last but not least, one may want to understand

and quantify the signal-processing capabilities of

a single neuron without considering its bio-

physical machinery. This approach may reveal

general principles that explain, for example,

where neurons place their operating points and

how they alter their responses when the input

statistics are modified.

For such questions about neural efficiency

and adaptability, a neuron is best regarded as a

black box that receives a set of time-dependent

inputs—sensory stimuli or spike trains from

other neurons—and responds with an output

spike train. To account for cell-intrinsic noise, it

is necessary to characterize the input-output rela-

tion by a probability distribution, p(R|S), which

measures the probability that response R occurs

when stimulus S is presented.

Although models on levels I to IV make spe-

cific assumptions about neural processes and hence

about the functional form of p(R|S), such assump-

tions can be overly restrictive at level V. Here, it

is often advantageous to work with nonparametric

estimates of p(R|S) that are directly taken from the

measured data. Such models have, for example,

been used to estimate the information that the

spike train of a neuron conveys about its inputs

and have revealed that sensory neurons operate

highly efficiently, often close to their physical

limits (56). Indeed, Barlow’s ‘‘efficient coding

hypothesis’’ suggests that neurons optimize the in-

formation about frequently occurring stimuli (57).

Theoretical studies have shown how individual

neurons may shift their input-output curves to reach

that goal (23). Moreover, recordings of a motion-

sensitive neuron in the fly visual system reveal that

adaptation can modify a neuron’s input-output

function to maximize information about time-

varying sensory stimuli (58). In

this case, however, it is possible

that the adaptive mechanism is

not implemented on the single-

cell level but instead results

from the underlying multicel-

lular Reichardt motion detec-

tion circuitry (59, 60). Similar

ambiguities between single-cell

and network adaptation exist

in the auditory midbrain (61).

Evolutionary adaptations may

not be guided to optimize the in-

formation about all natural stimu-

li. In acoustic communication

systems, for example, neural re-

sponses are well matched to

particular behaviorally relevant

subensembles. Most likely, stimu-

li from those ensembles were

selected as communication sig-

nals because they lead to efficient

neural representations (62, 63).

Challenges

‘‘A good theoretical model of a

complex system should be like a

good caricature: it should empha-

size those features which are most

important and should downplay

the inessential details. Now the

only snag with this advice is that

one does not really know which

are the inessential details until one has understood

the phenomena under study’’ (64).

This general dilemma, formulated by the

physicist Frenkel almost a century ago, applies in

particular to the single neuron. Which details of

ionic conductances and morphology are relevant

for particular aspects of its cell type–specific or

individual dynamics? How do these dynamics

contribute to the neuron’s information processing?

Identification of a fundamental computation per-

formed by the neuron (Table 1 and Table 2) may

help address these questions. Brain function,

however, relies on the interplay of hundreds to

billions of neurons that are arranged in specialized

modules on multiple anatomical hierarchies. Even

Fig. 3. Single-neuron computation. The neuron in the center (86) can be ap-
proximated by an NLN cascade (left) for stationary inputs (67), or, more generally, by
a compartmental model (right). The cascade (level IV) is equivalent to a two-layer
feedforward network and shows that under a firing-rate assumption, a single neuron
may perform the function of an entire artificial neural net. Electrical couplings within
compartmental models (levels I and II) are bidirectional. The right model therefore
corresponds to a feedback network and can exhibit persistent activity, hysteresis,
periodic oscillations, and even chaos. These phenomena are impossible in
feedforward systems and may support complex computations in the time domain.
The relevance of either model depends on the statistics of synaptic inputs (i.e., on
the neural code of the investigated brain area).
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today, it remains unclear which level of single-cell

modeling is appropriate to understand the dynam-

ics and computations carried out by such large

systems. However, only by understanding how

single cells operate as part of a network (35) can

we assess their coding and thus the level of detail

required for modeling. For example, most

network models use point-neuron models (65),

whereas several aspects of brain function require

multicompartmental models (24, 25).

It has thus become increasingly clear that a

thorough understanding of single-neuron func-

tion can be obtained only by relating different

levels of abstraction. Trying to incorporate every

biological detail of the investigated neuron is

likely to obscure the focus on the essential dy-

namics, whereas limiting investigations to highly

abstract processing schemes casts doubt on the

biological relevance of specific findings. Help

may come from analyzing the transition between

different modeling levels. Interesting connections

have been drawn, for example, by transforming a

Hodgkin-Huxley–type model (level III) into a

phenomenological firing rate description (66)

or a cascade on level IV (31). And the integra-

tive properties of dendritic trees as evolved as

those of pyramidal cells can be captured by a two-

layer feedforward network (i.e., an NLN cascade)

(level IV), at least for stationary stimuli (67). For

nonstationary stimuli, however, the cascade fails

(Fig. 3). This underscores the need to alternate

between different levels of single-neuron models

in close connection with considerations about the

neural codes of larger cell populations.

Deriving model parameters from experimen-

tal data brings about its own collection of prob-

lems: How should we deal with the cell-to-cell

variability of parameter values? The common

resort, population averaging, can be misleading

because the dynamical behavior of single-cell

models is, in general, not a monotone function of

their parameters; the mean behavior within a class

of models may strongly differ from that of a model

with mean parameter values (68), and nearly

identical dynamical characteristics may be imple-

mented by rather different parameter combina-

tions (69). With increasing model complexity, the

number of parameters to be estimated increases to

such an extent that they must be taken from

different cells or even different preparations, further

lowering the model’s trustworthiness. Furthermore,

models are often calibrated using in vitro data, yet

they are designed to capture the neural dynamics

and computations of behaving animals.

Conclusions

There is no general solution for any of these chal-

lenges. Iterating the loop of model prediction,

experimental test, and model adjustment is an

obvious strategy for stepwise progress. One should

be aware, however, that elaborate single-cell models

are not sufficiently constrained by data, nor is there

any guarantee that crucial components of the real

biological neuron are already included. Wrong

models may therefore be falsely ‘‘verified,’’ and

long-term progress may require many iterations

of the model-experiment loop until an incorrect

assumption is eventually falsified.

There is good news, too: The rapid develop-

ment of experimental tools to study single neurons

in vivo (70) will generate data urgently needed to

advance quantitative models. With powerful

computers tightly integrated in modern laborato-

ries, advanced on-line techniques such as the

‘‘dynamic clamp’’ (71) will be used routinely in

the future. In this technique, voltage-gated con-

ductances that cannot be selectively blocked by

pharmacological agents are counterbalanced by

currents that are artificially generated using the

neuron’s present state. This approach has clarified,

for example, the influence of persistent sodium

currents on spike generation (72). To mimic in

vivo input patterns during in vitro experiments,

synaptic conductances can be inserted with a

dynamic clamp (6, 36, 73). Adaptive stimulations

with real-time data analysis can also be used to

optimize recording times, allowing one to extend

traditional concepts such as ‘‘best stimulus’’ to

the information-theoretic level (62).

These developments show that the divide

between experiment and theory is disappearing.

There is also a change in attitude reflected by var-

ious international initiatives (74, 75): More and

more experimentalists are willing to share their raw

data with modelers. Many modelers, in turn, make

their computer codes available. Both move-

ments will play a key role in solving the many

open questions of neural dynamics and information

processing—from single cells to the entire brain.
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REVIEW

Neuronal Computations with
Stochastic Network States
Alain Destexhe1* and Diego Contreras2

Neuronal networks in vivo are characterized by considerable spontaneous activity, which is
highly complex and intrinsically generated by a combination of single-cell electrophysiological
properties and recurrent circuits. As seen, for example, during waking compared with being
asleep or under anesthesia, neuronal responsiveness differs, concomitant with the pattern of
spontaneous brain activity. This pattern, which defines the state of the network, has a dramatic
influence on how local networks are engaged by inputs and, therefore, on how information is
represented. We review here experimental and theoretical evidence of the decisive role played by
stochastic network states in sensory responsiveness with emphasis on activated states such as
waking. From single cells to networks, experiments and computational models have addressed the
relation between neuronal responsiveness and the complex spatiotemporal patterns of network
activity. The understanding of the relation between network state dynamics and information
representation is a major challenge that will require developing, in conjunction, specific
experimental paradigms and theoretical frameworks.

B
rain operations are embedded in a con-

tinuous stream of complex spontaneous

activity that interacts nonlinearly with

incoming sensory inputs, outgoing motor com-

mands, and internal association processes. Spon-

taneous brain activity refers to ongoing network

activity not dominated by any particular sin-

gle sensory input. Spontaneous brain activity

is generated by the combination of intrinsic

electrophysiological properties of single neu-

rons (1) and synaptic interactions in networks

(2); it is dependent on the level of activation of

neuromodulatory systems (3, 4) and is cor-

related with the functional state of the brain (2).

Most of the existing knowledge about the re-

lation between neuronal responsiveness and

spontaneous brain activity comes from the com-

parison between waking and sleep states (5).

However, even within the stable state of wak-

ing, subtle variations in the spatiotemporal

pattern of network activation strongly influ-

ence information processing, and vice versa,

sensory inputs modify ongoing activity. Such

interplay between intrinsically generated ac-

tivity and its modulation by external input is

at the very core of the mechanisms by which

the brain represents the external world and

elaborates successful response strategies. The

complexity of network dynamics is beyond

the reach of current recording methods and

requires appropriate computational methods

carefully constrained by biological data. Pre-

dictions from current modeling efforts are a

critical guide for designing new experimental

approaches.

Experimental Characterization of Intrinsic
Dynamics in Neocortex

Understanding the neuronal mechanisms of

spontaneous brain activity is of critical impor-

tance in understanding its role in information

processing. For example, the cellular mecha-

nisms of synchronized oscillations during sleep

and anesthesia explain why neural responsive-

ness is reduced during those states (2). How-

ever, much less is known about the complex

intrinsic dynamics that characterize the sponta-

neous activity during the waking state. It is

during the waking state that response variability

and the spatiotemporal patterns of network ac-

tivation are key elements of the brain operations

that generate adaptive behavior.

The spontaneous activity recorded in the

electroencephalogram (EEG) from cortex and

thalamus varies greatly between waking and

sleep states. During sleep, the EEG is dominated

by large-amplitude waves with high temporal

and spatial coherence (Fig. 1A), and most of its

spectral power is below 15 Hz (4). Rhythmic

components are prevalent, although they are

highly aperiodic and interspersed with non-

rhythmic large-amplitude waves. Intracellular

recordings in vivo demonstrate large variations

in membrane potential (V
m

) occurring synchro-

nously across large populations (5, 6).

In contrast, upon awakening or during rapid

eye movement (REM) sleep (also termed brain

activated states), EEG spontaneous activity is

characterized by low-amplitude waves, with

low spatial and temporal coherence and high

spatiotemporal complexity (Fig. 1B), not domi-

nated by any identifiable pattern (4). The spec-

tral power of the activated EEG is characterized

by frequencies above 15 Hz. Intracellular rec-

ordings in vivo during activated states demon-

strate absence of slow oscillations or any large

V
m

fluctuations characteristic of sleep (7). In-

stead, cortical and thalamic neurons show a

stable resting V
m

at a depolarized level close to

firing threshold and a noisy, highly irregular

pattern of background synaptic activity (7) (Fig.

1C). Interspersed within the synaptic back-

ground activity, there are short bouts of fast

(20 to 80 Hz) oscillations, which last a few tens

of milliseconds and which are occasionally

crowned by spikes (8). Therefore, fast oscillations

in cortical and thalamic networks are different

from the intrinsically generated, well-organized,

and stable subthreshold oscillations in highly

rhythmic structures such as the inferior olive (9).

Fast oscillations also appear in relation to sen-

sory stimuli and have been proposed to subserve

a coordinating function among neuronal groups
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