
Supplementary Methods

Testing the Efficiency of Sensory Coding with optimal stimulus ensembles

by Christian K. Machens, Tim Gollisch, Olga Kolesnikova, and Andreas V.M. Herz

Contents

1 Introduction 2

1.1 Information capacity . 2

2 Information maximization OFF-line 2

2.1 Blahut-Arimoto algorithm . 2
2.2 Smoothness of the OSE . 3

3 Information maximization ON-line 3

3.1 Parameterization of stimulus ensembles . 4
3.2 Drawing stimuli . 5
3.3 Updating the parameters—rate code . 5
3.4 Updating the parameters—timing code . 6
3.5 Examples for the evolution and convergence of parameters 6

4 Estimation bias and other technical concerns 8

4.1 Effect of bias on the maximization algorithm 8
4.2 Response latency . 11
4.3 Adaptation . 11

5 Estimating model probabilities 11

1

1 Introduction

In the following, we present the technical details necessary to find stimulus ensembles that
maximize the mutual information. For a small set of predetermined stimuli, the optimal
stimulus ensemble (OSE) can be found offline (Section 2; cf. Fig. 1D,E of main text). For
larger stimulus spaces, we approximate the OSE online in an iterative procedure (Section
3; cf. Fig. 2–5 of main text). Some of the reliability and consistency issues of the online
algorithm, such as estimation bias, problems with latencies and adaptation are discussed
in Sections 3 and 4. Finally, we describe how to estimate the information rates shown in
Fig. 6D,E (Section 5).

1.1 Information capacity

As explained in the main text, we define an optimal stimulus ensemble (OSE) as a stimulus
ensemble that maximizes the information transfer of a given system. In this section, we
recall the technical definition of OSEs.

Consider a stochastic input-output system with inputs s and outputs r. For simplicity,
we will assume that both are given by discrete sets. The conditional probability distribution
p(r|s) describes how the system relates inputs to outputs. The amount of information I

that is conveyed by such a system (i.e., the mutual information between s and r) depends
on both p(r|s) and the prior distribution of inputs p(s),

I[p(·)] =
∑

r

q(r) log2 q(r) −
∑

s

p(s)
∑

r

p(r|s) log2 p(r|s) (1)

where q(r) =
∑

s p(r|s) · p(s). The mutual information is bounded by the information
capacity

C = max
p(·)

I[p(·)] (2)

of the system (Cover and Thomas, 1991; Shannon and Weaver, 1949), where the maximum
is determined with respect to all possible input distributions. We call any distribution p(s)
for which the system reaches its information capacity, an optimal stimulus ensemble and
denote it as popt(s). In the next section, we will show how an optimal ensemble can be
estimated numerically, if p(r|s) is known.

2 Information maximization OFF-line

A central result of information theory holds that the mutual information has a single max-
imum in the space of all probability distributions p(s) (Cover and Thomas, 1991). This
maximum can be degenerate, forming a plateau rather than a single peak. Nonetheless,
we need not worry about the existence of local maxima which considerably simplifies the
problem of determining popt(s) for a given p(r|s). To find an optimal stimulus ensemble
popt(s), we use the Blahut-Arimoto algorithm, as described next.

2.1 Blahut-Arimoto algorithm

Given a conditional response distribution p(r|s), the Blahut-Arimoto algorithm allows to
determine an optimal stimulus ensemble popt(s). At step n = 1, we construct an initial
stimulus ensemble pn(s) with pn(s) > 0 for all s (for instance, a uniform distribution). We
then iterate the equation

pn+1(s) = c · pn(s) · exp
[

∑

r

p(r|s) log2

p(r|s)

qn(r)

]

(3)

2

where qn(r) =
∑

s p(r|s)pn(s). The proportionality factor c in (3) is determined by the
normalization condition

∑

s pn+1(s) = 1. The term in the exponent corresponds to the
Kullback-Leibler distance between p(r|s) and qn(r) and will become large if the two distribu-
tions differ strongly. Consequently, the Blahut-Arimoto algorithm increases the probability
p(s) of an informative stimulus s, i.e., a stimulus s whose elicited responses, as described
by p(r|s), are distinct from the overall response distribution qn(r). By the same token, the
algorithm decreases the probability p(s) of an uninformative stimulus s, i.e., a stimulus s

whose conditional response distribution p(r|s) is similar to qn(r). For n → ∞, the algo-
rithm converges to an optimal stimulus ensemble, pn(s) → popt(s) (Blahut, 1972; Cover and
Thomas, 1991). The information maximum can be degenerate and many different stimulus
ensembles can be optimal. In these cases, the Blahut-Arimoto algorithm will return only
one of the optimal ensembles. Which one is found, depends on the initial stimulus ensemble
p1(s).

2.2 Smoothness of the OSE

When applying the algorithm to real data, we found that the resulting OSEs are highly
susceptible to minor variations in the estimates of the conditional probabilities p(r|s). Two
slightly different sets of data may then lead to completely different OSEs. The results of this
naive procedure therefore do not generalize well, a classical signature of overfitting. Since
the OSE assigns a probability to every stimulus, there are as many parameters as stimuli.
The naive approach usually results in a spiky distribution in which only a subset of stimuli
have finite probabilities and the rest zero probability of occurring.

To circumvent this problem, we need to constrain the set of all possible OSEs. One
possibility is to parameterize the OSE with a small set of parameters and then find their
optimum values; this is the approach we take in the online algorithm. Another possibility is
to introduce explicit “regularization” constraints on the objective function such as a penalty
for spiky distributions (Hastie et al., 2001).

In the spirit of the latter approach, we used an ad hoc smoothing procedure whose main
justification is that it leads to OSEs that generalize well (in the sense that slightly differ-
ent data sets result in the same OSEs). Since we expect that the conditional probabilities
p(r|s) change smoothly with s, there should be an optimal stimulus ensemble popt(s) that
changes smoothly as well. Using the stimulus ensemble that results from the Blahut-Arimoto
algorithm, we eliminated the spurious, spiky structure of the ensemble by smoothing the
distribution with a Gaussian kernel. The width of the kernel was maximized under the con-
straint that the information rate of the smoothed ensemble lie within 99% of the maximum
rate. This is the procedure that underlies the red curve in Fig. 1E.

3 Information maximization ON-line

The high dimensionality of the input space and the limited amount of data available in an
experiment make it difficult to calculate popt(s) a posteriori and offline. Here, we handle
the high-dimensionality of the space as well as the potential overfitting problem by param-
eterizing the stimulus ensemble. We then approximate popt(s) in an iterative procedure in
which we choose new experimental stimuli according to the most recent estimate of popt(s)
(Machens, 2002). In short, the algorithm works as follows (see also Fig. 2 in the main text):

1 Initialization: We arbitrarily choose an initial stimulus ensemble pn(s) with n = 1,
e.g., the black ellipse in Fig. 2A. The technical details of the parameterization of the
stimulus ensemble are explained in Section 3.1.

2 Testing: We draw ten stimuli from the distribution pn(s) and apply them repeatedly
to the system. The stimuli and spike train responses are shown in Fig. 2B. Every

3

stimulus is characterized by its sample mean and standard deviation and is plotted as
a dot in Fig. 2A. Our method of selecting the stimuli is explained in Section 3.2.

3 Updating: We use the Blahut-Arimoto algorithm to determine the contribution of
each stimulus to the current maximum information rate; these contributions are in-
dicated by the size of the dots in Fig. 2C. We update the stimulus ensemble pn(s),
n → n + 1, by shifting it towards the more important stimuli (gray ellipse in Fig. 2C).
The parameter updating procedures are described in Sections 3.3 and 3.4

4 Iterating: We continue with Step 2, using the updated stimulus ensemble. Note that
all previous stimuli and the recorded responses remain in the data set used for the
updating procedure.

In our experiments, we let the algorithm run for a fixed number of iterations (n = 50) or
until the cell was lost. For experimental systems with very long recording times, a formal
convergence criterion can be used (Machens, 2002).

3.1 Parameterization of stimulus ensembles

In the present study, a stimulus snippet s was defined as an 80-msec-long amplitude modu-
lation of a sine wave carrier (characteristic frequency of the receptor neuron, 2.5 kHz in the
example of Fig.2). Using a cut-off frequency of 250 Hz, a stimulus snippet s is thus specified
uniquely by N = 40 sampling points, s = (s1, s2, · · · , sN). We characterize each snippet by
its sample average, a(s), and its sample standard deviation b(s),

a(s) =
1

N

∑

j

sj (4)

b(s) =

√

1

N − 1

∑

j

(sj − a(s))2 . (5)

The stimulus ensemble, in turn, is characterized as a distribution over these two stimulus
variables, a(s) and b(s). We define the distribution of stimuli for the online algorithm as

p(s) ∝ G(a(s), b(s)) . (6)

where G(a, b) denotes a Gaussian distribution over the mean a and standard deviation b of
the snippets,

G(a, b) =
1

2πσασβ

exp
[−(a − α)2

2σ2
α

]

· exp
[−(b − β)2

2σ2
β

]

. (7)

with parameters α, σα, β, and σβ that describe the mean (α) and standard deviation (σα) of
the snippets’ sample average and the mean (β) and standard deviation (σβ) of the snippets’
standard deviation, respectively.

Accordingly, the stimulus ensemble is characterized by the four parameters α, σα, β,
and σβ . An advantage of this distribution is that we can easily estimate its four parameters
using maximum-likelihood methods as explained below. Note that all stimuli s with identical
mean and standard deviation have the same probability of occurrence.

The choice of parametrization allows us to independently assess the effects of two time
scales: on a fast time scale (2 ms), i.e., within a snippet, the stimulus structure is determined
by the statistics of the stimulus fluctuations (parameters β, σβ); on a slow time scale (80 ms),
the stimulus is controlled by changes in the mean of the snippets (parameters α, σα). The
values of the parameters can be visualized as an ellipse that is drawn with a center (α, β)
and half axes σα, σβ (see Fig. 2A). During the course of the experiment, the values for these
parameters will be updated such that information transmission is maximized.

4

3.2 Drawing stimuli

To draw snippets s from the distribution in Eq. (6), we resorted to the following simple
approximation: First, mean a and standard deviation b are drawn from the two-dimensional
Gaussian distribution G(a, b). In the rare cases when b turned out to be negative, corre-
sponding to negative standard deviations, we simply set b to zero. Second, a “white” noise
snippet y = (y1, y2, . . . , y40) is drawn from a 40-dimensional, normalized Gaussian distribu-
tion with zero mean and a diagonal covariance matrix with unit standard deviation. Finally,
the experimentally applied snippet s is obtained by shifting and scaling y by the selected
mean a and standard deviation b,

s = by + a . (8)

Note that this procedure is not unique: different combinations of a, b, and y can lead to
the same snippet s. Accordingly, the probability of drawing s is not exactly represented
by Eq. (6). Our drawing procedure therefore only approximates the stimulus ensemble in
Eq.6. (Given the high dimensionality of the stimulus space, the approximation is very good,
though.) For the online algorithm, this does not matter. At worst, the approximation may
slow down the speed of convergence.

3.3 Updating the parameters—rate code

If a given set of stimuli {si, i = 1 . . .K} has been tested on the system, we can estimate the
conditional probabilities p(r|si) where r denotes the response—here the firing rate of the
neuron. Given this information, we can use the Blahut-Arimoto algorithm and iterate the
equation

qm+1(si) ∝ qm(si) · exp
[

∑

r

p(r|si) log2

p(r|si)

qm(r)

]

(9)

with qm(r) =
∑

i p(r|si)qm(si). The resulting optimal distribution q(si) is only defined on
the stimuli measured so far; we can visualize the values q(si) as weights that specify how
important each stimulus is for the transmitted information (see dots in Fig. 2C; see also
Fig. 5).

In the next step, we use these weights to update the parameters of the stimulus ensemble
p(s). For that purpose, we use maximum likelihood estimation to find parameters such that
the probabilities p(si) best match the weights q(si). This is done by maximizing the weighted
likelihood function

log L =
∑

i

q(si) log p(si) (10)

=
∑

i

q(si) log G
(

a(si), b(si)
)

. (11)

The likelihood maximization then results in the following set of update equations:

α =
∑

i

q(si)a(si) (12)

σ2
α =

∑

i

q(si)(a(si) − α)2 (13)

β =
∑

i

q(si)b(si) (14)

σ2
β =

∑

i

q(si)(b(si) − β)2 (15)

5

The new parameters specify the updated stimulus ensemble (see second ellipse in Fig. 2C). In
the next iteration, the new ensemble is used to draw new stimuli (as explained in Section 3.2)
and all the steps are repeated, thus iterating the algorithm.

In each iteration, the algorithm uses all available data (and not just those from the last
iteration) to calculate new estimates for the parameters of the stimulus ensemble, Eqs. (12)–
(15). During the first few iterations, however, the available data is relatively sparse which
can compromise the estimation of the parameters. This can be counterbalanced by using a
more conservative updating rule for the first few iterations, e.g., by updating the parameters
“only” to 1

2 [xnew + xold]. In our experiments, we applied this rule during the first ten
iterations.

3.4 Updating the parameters—timing code

In the timing code, the responses r are taken to be binary strings or “words” which are
constructed by binning the spike train into 2 msec bins; every bin takes either the value one
(if a spike is present) or zero (if no spike is present). The size of the bins was chosen to be
small enough that no bin contained two spikes.

For 80-msec-long stimuli, we obtain 40-bit words so that the response set has 240 entries.
Unfortunately, this number is far too large to explore a response set of that size in the
electrophysiological experiments. We therefore resorted to the following short-cut: Assum-
ing that we can neglect correlations in the response above 20 msec1, we approximate the
conditional response distribution by its factorization

p(r|s) = p(r1|s20,1)p(r2|s20,2)p(r3|s20,3)p(r4|s20,4) .

Here r1, r2, r3, and r4 are four 10-bit words whose concatenation is r; likewise, s20,1, . . . , s20,4

are four 20-msec stimuli whose concatenation is s. Since the stimulus ensemble can be
decomposed similarly, the joint distribution of responses and stimuli can be approximately
factorized as well, and the information conveyed about an 80-msec-long stimulus is roughly
the same as the summed information about the four 20-msec-long stimulus fragments. Using
this short-cut, we can perform the updating procedure on 20-msec-long stimuli and 10-bit
words. Since the response set is now reduced to 210 different symbols, its exploration during
the course of the experiment is feasible. To make full use of the data, we used sliding 20-msec
windows (advanced in steps of 2 msec) to assemble stimuli and responses.

With this approximation, the updating procedure is the same as for the rate code (Section
3.3). The stimulus weights q(s20,i) were computed using the Blahut-Arimoto algorithm,
Eq. (9), and the parameters were updated according to Eq. (12–15).

3.5 Examples for the evolution and convergence of parameters

As explained in the main text, the analysis can be performed for different readout modes.
We used two different modes, a rate code, where the response is specified by counting spikes
in 80-msec-long windows corresponding to the length of the snippets, and a timing code,
where the response is given by 20-msec-long stretches of the spike train binned at 2 msec,
yielding 10-bit binary words.

For the case of a rate code, Figure S1 shows the evolution of the model parameters and
the achieved transmitted information as a function of the number of iterations. The values
of the model parameters are again visualized as ellipses that outline the standard deviations
of the Gaussian G(a, b) from which the mean and standard deviation of the snippets are
drawn for the subsequent iteration. The final ensemble is denoted by a thick black ellipse.
Here, three runs of the algorithm obtained from the same neuron with different choices

1Note that the investigated receptor neurons integrate the sound amplitude over a few milliseconds only

6

20 40 60 80
0

5

10

15

20

Mean (dB SPL)

S
ta

nd
ar

d
D

ev
. (

dB
)

a

20 40 60 80
0

5

10

15

20

Mean (dB SPL)

S
ta

nd
ar

d
D

ev
. (

dB
)

b

20 40 60 80
0

5

10

15

20

Mean (dB SPL)

S
ta

nd
ar

d
D

ev
. (

dB
)

c

10 20 30 40 50
0

20

40

60

Iterations

In
fo

rm
at

io
n

(b
its

/s
ec

)

d

Figure S1: Online iterations for three different initial conditions from the same cell, using a
rate-code read-out. (a–c) The different initial conditions of the stimulus ensembles result in
different fits of the final optimal ensembles (black ellipses). (d) In all cases, the information
rate grows with each iteration until it saturates after about 20 iterations. Independently of
the initial conditions, all runs achieve about the same information rates (I ≈ 50 bits/sec).

20 40 60 80
0

5

10

15

20

25

Mean (dB SPL)

S
ta

nd
ar

d
D

ev
. (

dB
)

a

20 40 60 80
0

5

10

15

20

25

Mean (dB SPL)

S
ta

nd
ar

d
D

ev
. (

dB
)

b

20 40 60 80
0

5

10

15

20

25

Mean (dB SPL)

S
ta

nd
ar

d
D

ev
. (

dB
)

c

20 40 60 80
0

100

200

300

400

500

Iterations

In
fo

rm
at

io
n

(b
its

/s
ec

)

d

Figure S2: Online iterations for three different initial conditions for three different cells
using a timing-code read-out.

7

for the initial stimulus ensembles are shown. Although the runs start from different initial
conditions and converge to different final ensembles, the three experiments achieve about the
same information rates (Fig. S1d), suggesting that each ensemble succeeds in maximizing
the information transfer.

To illustrate how the model parameters develop for the timing code, series of such it-
erations are shown in Fig. S2 for three different cells. The obtained information rates are
about one order of magnitude larger, approaching Iopt = 400 bits/sec.

4 Estimation bias and other technical concerns

4.1 Effect of bias on the maximization algorithm

All values of the transmitted information that we used in this work were obtained from
entropy estimates of the form H(r) = −

∑

r pest(r) log2 pest(r), where the sum runs over all
observed responses r and where pest(r) denotes the empirical estimator of the probability of
finding r,

pest(r) =
observations of r

trials
. (16)

It is well known that this naive estimator of H is prone to systematically underestimate
the true entropy thus leading to a bias in the information rates (Treves and Panzeri, 1995;
Strong et al., 1998; Nemenman et al., 2004; Paninski, 2003). Two issues are therefore to be
considered: how does this bias influence the information estimates and, more importantly,
how does it influence the obtained OSEs?

To gain some insight into the latter problem, it is helpful to consider the extreme case
of only one repetition per stimulus. In this case, the noise entropy (second term in Eq. (1))
is always zero, and the maximization algorithm maximizes output entropy only. Hence, the
algorithm does not distinguish between noisy and reliable regions in stimulus space, it simply
moves into whatever region leads to the greatest variety of reponse symbols. If we increase
the number of repetitions, the estimate of the conditional response distribution p(r|s) will
provide more and more information about the reliability of the symbols. Accordingly, the
noise entropy term will become more and more important, until, in the event of infinitely
many repetitions, the conditional estimates are perfect, and we maximize the information
rate. Hence, any optimization based on a finite number of repetitions can be seen as a com-
promise between merely maximizing the output entropy and truly maximizing the mutual
information.

In the offline analysis, we can address the question of the influence of bias induced by
finite data, e.g., by performing the analysis on only a fraction of the trials. Calculating
the information for a fixed set of optimal weights popt(s), but using only a fraction of trials
allows an extrapolation to infinite data (inverse data fraction = 0), and thus an estimate
of the true information (Strong et al., 1998). Fig. S3a and S4a show that there is indeed a
substantial overestimation of information and that the corrections to the information values
are of the order of 5% for both the rate and the timing code.

The same procedure can be applied to evaluate the bias on the estimation of the param-
eters of the OSE. Recalculating the parameters for fractional data, one observes that the
variance of the estimates for the parameters outweighs the bias in most cases (Fig. S3c–f
and S4c–f). Accordingly, the estimation bias for the optimal parameters is less severe than
that of the information rates. An explanation for this may be that the bias, even if sub-
stantial, is similar for all stimulus ensembles near maximal information transmission. Thus
the height of the information maximum is certainly affected by the estimation bias, but less
so its location. These results suggest that the parameter values obtained from the online
algorithm are rather robust and that the number of trials allows for a sufficiently precise

8

 46

 50

 54

M
I -

 fi
xe

d
w

ei
gh

ts
a b

c d

e f

 46

 50

 54

m
ax

im
al

 M
I

 50

 51

 52

 53

α

 10

 11

 12

β

 16

 18

 20

 0 1 2 3 4

inverse data fraction

σα

 4

 5

 6

 0 1 2 3 4

inverse data fraction

σβ

Figure S3: Finite size effects: mutual information and parameters as a function of the
data size (shown as inverse fraction of the measured data) for one sample cell and the rate
code paradigm. (a) With the weights popt(s) fixed at the values obtained when using the
complete data set, the mutual information (MI) was calculated for different fractions of the
data by choosing a subset of trials at random. The blue points depict results from individual
calculations, and the red points average values from 10 calculations. The black line shows an
extrapolation to infinite data (inverse data fraction = 0) obtained from the five leftmost red
points, which can be used to estimate the true information (arrow), in this case ∼46.9 bits/s.
(b) Values of the mutual information with weights popt(s) not held fixed, but recalculated
for each fractional data set for comparison. This approach leads to an information estimate
of ∼46 bits/sec. (c–f) Values of the optimal parameters α, σα, β, σβ obtained for different
fractions of the data. Blue points again show individual calculation, red points averages over
10 calculations for a fixed number of left-out trials. In contrast to the values for the mutual
information, differences of the parameter values for different calculations are dominated by
the variance, not the bias, as shown by the large variability of the data even for small values
of the inverse data fraction.

9

 420

 430

 440

 450

 460

 470

M
I -

 fi
xe

d
w

ei
gh

ts

a b

c d

e f

 420

 430

 440

 450

 460

 470

m
ax

im
al

 M
I

 46

 48

 50

 52

α

 11

 12

 13

β

 6

 6.5

 7

 7.5

 0 1 2 3 4 5

inverse data fraction

σα

 3.5

 4

 4.5

 0 1 2 3 4 5

inverse data fraction

σβ

Figure S4: Finite size effects: mutual information and parameters as a function of the data
size (shown as inverse fraction of the measured data) for one sample cell and the timing
code paradigm. The figure format is equivalent to that of Fig. S3. (a) The extrapolated
value of the true information (arrow) with weights popt(s) fixed at the values obtained when
using the complete data set was found to be 423.1 bits/s. (b) Information for fractional data
with recalculated weights. (c–f) Parameter values computed for fractional data. Blue points
show individual calculation with subsets of trials chosen at random, red points averages
over 25 calculations for a fixed number of left-out trials. The effect of bias is most severe
for estimation of the parameter β, indicating that this value may be underestimated. For
the other parameters, the bias is of the order of a few per cent and similar to the accuracy
of the data given by the spread of the individual results.

10

estimate of the conditional response distribution. The analysis with fractional data allows
us to assess the size of the statistical error for the values of the model parameters. Leaving
out one trial of all the data, e.g., yields a spread of values of the order of 10%.

4.2 Response latency

Since the investigated system has an intrinsic response delay between stimulus presentation
and measured response, stimuli and responses could potentially be misaligned, especially
when cut into 20-msec-long windows as in the timing-code read-out. We therefore corrected
for this response delay. The resulting total latency of the signal, due to propagation of
the acoustic signal, the biomechanical processes at the receptor, and the finite conductance
velocity along the axon, was estimated to have a value of around 4 msec. The assignment
of responses to particular stimuli was therefore shifted correspondingly.

4.3 Adaptation

The conditional probabilities p(r|s) may depend on the past history of the system. Indeed,
the system under study adapts on longer time scales (> 50 msec) and thus the estimated
conditional probabilities p(r|s) will also reflect the specific stimulus history of the system.
If adaptation seeks to maximize the mutual information about the stimuli, as has been
suggested (Brenner et al., 2000; Fairhall et al., 2001), then the algorithm and the neuron
may meet halfway. Anecdotal evidence suggests that the dependence on initial conditions (in
particular, the position and extent of the ensembles along the x-axis) may in some instances
be partly a result of adaptation. This point, however, will have to investigated in more
detail in the future.

5 Estimating model probabilities

The conditional probabilities p(r|si) provide us with knowledge about the system’s input-
output relation on select points si in stimulus space. Can we use this knowledge to reliably
estimate information rates for arbitrary stimulus ensembles pϑ(s) where ϑ = (α, σα, β, σβ)?
In general this will not be possible; however, if the bulk of the distribution pϑ(s) falls into
the part of stimulus space where we do know the conditional probabilities p(r|si), we can.

We can compute the probabilities pϑ(si) for the tested stimuli according to Eq. (6). In
estimating the information rates, we need to keep in mind that the stimuli si were not drawn
from this distribution. Rather, in the online procedure, the stimuli were drawn from the
distribution (sampling density)

ρ(s) =
1

N

N
∑

i=1

pθi
(s) (17)

where θi denotes the parameters of the stimulus ensemble at the i-th iteration of the ex-
periment and we average over all N iterations. To correct for this fact, we introduce the
corrected distribution

p̃ϑ(si) ∝
pϑ(si)

ρ(si)
(18)

which in turn can be used to estimate the mutual information according to the equation

I =
∑

i,r

p(r|si)p̃ϑ(si) log2

p(r|si)

q(r)
(19)

and q(r) =
∑

i p(r|si)p̃ϑ(si). The value of I is then an estimate for the mutual information
conveyed by the stimulus ensemble pϑ(s).

11

References

Blahut, R. E. (1972). Computation of channel capacity and rate-distortion functions. IEEE

Trans. Inform. Theory, IT-18(4):460–473.

Brenner, N., Bialek, W., and de Ruyter van Steveninck, R. R. (2000). Adaptive rescaling
maximizes information transmission. Neuron, 26:695–702.

Cover, T. M. and Thomas, J. A. (1991). Elements of information theory. Wiley.

Fairhall, A. L., Lewen, G. D., Bialek, W., and de Ruyter van Steveninck, R. R. (2001).
Efficiency and ambiguity in an adaptive neural code. Nature, 412(22):787–792.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The elements of statistical learning

theory. Springer.

Machens, C. K. (2002). Adaptive sampling by information maximization. Phys. Rev. Lett.,
88:228104.

Nemenman, I., Bialek, W., and van Steveninck, R. R. R. (2004). Entropy and information
in neural spike trains: Progress on the sampling problem. Phys. Rev. E, 69:056111.

Paninski, L. (2003). Estimation of entropy and mutual information. Neural Comp., 15:1191–
1254.

Shannon, C. E. and Weaver, W. (1949). The mathematical theory of communication. Uni-
versity of Illinois Press.

Strong, S. P., Koberle, R., de Ruyter van Steveninck, R. R., and Bialek, W. (1998). Entropy
and information in neural spike trains. Phys. Rev. Lett., 80(1):197–200.

Treves, A. and Panzeri, S. (1995). The upward bias in measures of information derived from
limited data samples. Neural Comp., 7:399–407.

12

