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Rokem, Ariel, Sebastian Watzl, Tim Gollisch, Martin Stemmler,
Andreas V. M. Herz, and Inés Samengo. Spike-timing precision
underlies the coding efficiency of auditory receptor neurons. J Neu-
rophysiol 95: 2541–2552, 2006. First published December 14, 2005;
doi:10.1152/jn.00891.2005. Sensory systems must translate incoming
signals quickly and reliably so that an animal can act successfully in
its environment. Even at the level of receptor neurons, however,
functional aspects of the sensory encoding process are not yet fully
understood. Specifically, this concerns the question how stimulus
features and neural response characteristics lead to an efficient trans-
mission of sensory information. To address this issue, we have
recorded and analyzed spike trains from grasshopper auditory recep-
tors, while systematically varying the stimulus statistics. The stimulus
variations profoundly influenced the efficiency of neural encoding.
This influence was largely attributable to the presence of specific
stimulus features that triggered remarkably precise spikes whose
trial-to-trial timing variability was as low as 0.15 ms—one order of
magnitude shorter than typical stimulus time scales. Precise spikes
decreased the noise entropy of the spike trains, thereby increasing the
rate of information transmission. In contrast, the total spike train
entropy, which quantifies the variety of different spike train patterns,
hardly changed when stimulus conditions were altered, as long as the
neural firing rate remained the same. This finding shows that stimulus
distributions that were transmitted with high information rates did not
invoke additional response patterns, but instead displayed exceptional
temporal precision in their neural representation. The acoustic stimuli
that led to the highest information rates and smallest spike-time jitter
feature pronounced sound-pressure deflections lasting for 2–3 ms.
These upstrokes are reminiscent of salient structures found in natural
grasshopper communication signals, suggesting that precise spikes
selectively encode particularly important aspects of the natural stim-
ulus environment.

I N T R O D U C T I O N

Sensory systems have evolved to process information in a
fast and reliable manner. Their efficiency depends on the
stimulus characteristics and on how well the stimulus statistics
reflect the natural environment (see, e.g., Baddeley et al. 1997;
Dan et al. 1996; Laughlin 1981; Olshausen and Field 1996;
Rieke et al. 1995; van Hateren and van der Schaaf 1998; Vinje
and Gallant 2000). Indeed, already long ago, Attneave (1954)
and Barlow (1961) suggested that efficient neural representa-
tions should be reserved for stimuli to which an animal is
frequently exposed. On the other hand, the behavioral signifi-
cance of a stimulus may strongly differ from its probability in
the natural environment—even a rare stimulus might be cru-
cial for survival.

These observations raise a number of related questions: How
can a given sensory system transmit far more information
about some stimulus ensembles than about others? Which
stimulus features and neural response characteristics are re-
sponsible for these differences? Do well-encoded stimulus
features carry a particular behavioral meaning? To investigate
these questions, we modified natural stimuli to obtain artificial
stimulus ensembles that differ in particularly salient directions
in stimulus space. Analyzing how the neural responses depend
on the specific stimulus statistics can reveal which stimulus
attributes are instrumental for efficient sensory encoding.

As a model system, we chose the auditory periphery of
grasshoppers. Compared with visual signals or more elaborate
acoustic stimuli, the atonal “songs” of grasshopper are low-
dimensional, which makes them ideally suited for this study.
We recorded from auditory receptors in vivo and varied the
stimulus systematically in three behaviorally relevant direc-
tions.

Quantitative comparisons of stochastic responses to different
stimuli require a rigorous probabilistic framework. We use the
information theoretic approach proposed by Strong et al.
(1998). Two factors influence information transmission: if a
neuron is to represent a large range of stimuli, it should have a
rich repertoire of possible responses; on the other hand, to
reliably represent each sensory signal, repeated presentations
of one stimulus should elicit nearly identical responses. Exam-
ining these factors separately shows how the stimulus statistics
shape neural coding efficiency.

A spike-by-spike analysis of spike-time jitter allows us to
determine those stimulus features that contribute most to the
transmitted information; brief sound pressure upstrokes that
also occur at prominent locations within the grasshopper songs.
These upstrokes can elicit spikes with remarkable temporal
accuracy. Stimulus-dependent spike-time precision might
therefore provide a simple mechanism to selectively represent
behaviorally relevant features of natural stimuli in a reliable
and efficient manner.

M E T H O D S

Electrophysiology and data acquisition

Experiments were conducted on adult male and female Locusta
migratoria. Their legs, wings, head, gut, and dorsal part of the thorax
were removed. Once the animal was fixed with wax onto a Peltier
element that was heated to a constant temperature of 30°C, the
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metathoracic ganglion and tympanal nerve were exposed. Action
potentials were recorded intracellularly from the axons of auditory
receptors located in the tympanal nerve using standard glass micro-
electrodes (borosilicate; GC100F-10, Harvard Apparatus, Edenbridge,
UK) filled with 1 M KCl solution (30–100 M� resistance). The signal
was amplified (BRAMP-01, NPI Electronic, Tamm, Germany) and
recorded by a data acquisition board (PCI-MIO-16E-1, National
Instruments, Austin, TX) with a sampling rate of 10 kHz. Detection of
action potentials and generation of the stimuli were controlled by OEL
(on-line electrophysiology laboratory), a custom-made software. In
those experiments where action potential detection by the software
was deemed to be inexact, off-line spike detection was performed. All
experiments were conducted in a Faraday’s cage lined with sound-
attenuating foam to reduce echoes. The preparation was placed be-
tween two loudspeakers (Esotec D-260, Dynaudio, Skanderborg, Den-
mark, on a DCA450 amplifier, Denon Electronic, Ratingen, Ger-
many), 60 cm from one another. The stimuli were transmitted to the
loudspeakers by a data acquisition board at a conversion rate of 100
kHz and played only from the speaker ipsilateral to the nerve that was
being monitored. Recordings were obtained from 43 different receptor
cells from 25 animals. Each cell was tested with two or more stimuli,
resulting in 150 data sets in total (1 data set corresponds to 1 cell in
1 stimulus condition). The experimental protocol complied with
German law governing animal care.

Stimulus design and experimental paradigm

Each experiment began with a measurement of the preferred fre-
quency of the receptor, that is, the frequency for which the threshold
of the cell is lowest. This minimum lies typically between 3 and 20
kHz. The preferred frequency was subsequently used as the carrier
frequency of the stimulus. The stimulus consisted of random ampli-
tude modulations of the carrier wave. The modulation was generated
from an amplitude distribution of controlled shape, standard devia-
tion, and cut-off frequency (see Machens et al. 2001, for a detailed
explanation of stimulus construction). The cut-off frequency was at
most 800 Hz, that is, far below the carrier frequency.

In each experiment, two different amplitude-modulated stimuli
were compared. At the beginning, the baseline amplitudes of the two
stimuli were adjusted so that, in both conditions, the cell responded
with nearly the same firing rate. This was done with the purpose of
neutralizing the strong effect that the firing rate has on the information
transmission rate (Borst and Haag 2001). Only cells with firing rates
between 70 and 150 Hz that showed no systematic decrease or
increase in firing rate are reported here. These constitute 104 exper-
iments of the 150 that were carried out. In most of these 104
experiments, the difference between the firing rates of a cell in
response to the two stimuli was rather small; only in two cases was the
difference more than 20 Hz, but still less than 40 Hz. Most impor-
tantly, residual variations of the firing rates had no systematic depen-
dence on the stimulus condition. Throughout the rest of the experi-
ment, the baseline amplitude remained fixed.

Once the carrier frequency and baseline amplitudes were deter-
mined, each stimulus was played for 10 s while the neural activity was
recorded. These long stimuli were later used to calculate the neuron’s
linear forward filter.

When collecting data for the information analysis, each stimulus
was presented a number N of trials, ranging between 98 and 533
(average 166), depending on how long the recording could be sus-
tained. The two different stimuli lasted for 1 s and were played
alternatingly, separated by pauses of 700 ms to prevent slow adapta-
tion effects.

Information theoretical analysis

The statistical dependence between the stimulating sound wave and
the resulting neural activity was quantified using information-theoret-

ical measures. The first 200 ms of each trial was discarded to exclude
the sharp initial transient of the firing rate caused by spike-frequency
adaptation (see, e.g., Gollisch and Herz 2004). The voltage traces,
with an effective trial length T � 800 ms, were binned into short
windows of duration �t ranging in all cases from 0.4 to 3 ms. The
spike train was represented by a string of T/�t bins. Each digit in the
string indicated the number of spikes in the corresponding time bin. A
word w of length l was defined as a sequence with l/�t entries. The
sampled words were allowed to overlap with each other.

The mutual information between stimulus and response is defined
as the difference between the total entropy of the spike train and its
noise entropy. The total entropy Htotal(l) quantifies the richness and
variety in the patterns within the spike train. It is calculated from the
word distribution p(w), that is, the probability of finding a word w of
length l in the whole collection of trials

Htotal�l� � � �
w

p(w) log2 p(w) (1)

The noise entropy Hnoise(l), in turn, is the time average of the
trial-to-trial variability at a fixed time within each trial. In this picture,
each point in time is associated with a different stimulus, namely, the
temporal sequence of sound intensities preceding it. Therefore the
degree with which responses are time locked is a measure of the
statistical correspondence between stimuli and responses. The noise
entropy is calculated from the word distribution p(w�t), that is, the
probability of finding a word w starting at time t

Hnoise�l� � �
�t

T
�

t

�
w

p�w�t� log2 p�w�t� (2)

These naı̈ve estimates of the entropy depend both on the number of
trials N and the word length l. Because finite data sampling has an
upward bias effect on the estimated information (Treves and Panzeri
1995), undersampling problems were controlled by extrapolating the
second-order Taylor expansion of the total entropy and noise entropy
as a function of 1/N to the case N3 �. This was done by taking 1/5,
1/4, 1/3, 1/2, and the whole of the data, as in Strong et al. (1998). If
there are no long-range correlations, both Htotal(l) and Hnoise(l), grow
linearly with l, for large l. A linear regression of Htotal(l) and Hnoise(l)
as a function of 1/l therefore allows one to estimate the rates
Htotal � liml3�Htotal�l�/l and Hnoise � liml3�Hnoise�l�/l in the limit of
infinite word length (Strong et al. 1998). The information rate I is
defined as

I � H total � H noise (3)

Errors caused by goodness of fit of the Taylor expansion and the linear
regression were calculated and found to be always �3%. To estimate
the size of undersampling errors, a set of five differential equations
modeling the spike generation process was used (Watzl 2003). The
parameters in the model were adjusted to have the same adaptation
and refractory properties as the recorded cells. The artificially gener-
ated data showed that the difference of estimating information rates
with 100 trials, each one lasting for 800 ms, compared with the more
ideal case of 1,000 trials, each one lasting for 10 s was always �1%,
for �t � 0.4 ms. However, when reducing to �t � 0.2 ms, the error
grew to 12%. These simulation results are consistent with informa-
tion-theoretical considerations (Paninski 2003) that suggest that, for
the longest words used in this study, the sampling error at �t � 0.4 ms
is �5% but rapidly grows for smaller �t. Unless otherwise stated, all
information rates are therefore taken at �t � 0.4 ms.

Quantification of spike-time jitter

To estimate the amount of jitter in repeated spike trains, such as
those represented in the raster plots of Fig. 1C and D, the standard
deviation, across all trials, of each spike’s timing was calculated.
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To identify aligned spikes automatically, a sliding window span-
ning from some time t0 to t0 � �w was used. The width �w was
chosen small enough so that there was a high probability of finding
at most a single spike per trial inside the window, yet large enough
to encompass the typical amounts of jitter found in the system.
Here, we used �w � 5 ms, as the experimental protocol yielded a
mean interspike interval of 10 ms.

The amount of jitter j associated with the action potentials inside
(t0, t0 � �w) is defined as the standard deviation of spike occurrence
times in the different trials. To avoid ambiguities, only trials contain-
ing one single spike inside the window are used. For given t0, at least
one-half the trials were required to have a single spike in the window
to proceed to calculate a jitter value j. With this setting, 	80% of the
spikes participated in the calculation of the jitter; the remaining 20%
were discarded. Neither these percentages nor the jitter values them-
selves depended strongly on the fraction of trials required to have a
single spike in the chosen interval, as long as this fraction remained
less than 90%.

Calculating the jitter j from binned data can underestimate the true
jitter. Suppose that all spikes fall into the same bin, such that one-half
of the spikes lie at one end of the bin and the other half at the other
end. In this worst-case scenario, the true jitter is one-half the bin size.
The most conservative estimate of the true jitter j, which we will use
throughout, consists therefore of adding one-half the bin size to the
binned jitter estimate.

By sliding t0, a collection of j values can be obtained, resulting in
a histogram P(j). The mean jitter J is defined as J � 
jP(j)dj. All
values reported below were corrected for limited sampling. In all
cases, the correction was �1%.

The jitter measure introduced here has the advantage of having
units of time, and hence provides a quick, intuitive picture of the
temporal dispersion to be expected in the raster plots. In that sense, it
is similar to the measure used by Bair and Koch (1996) and differs
from other approaches (Neltner et al. 2000; Schreiber et al. 2003) that

essentially quantify the degree of coincidence of spike times in
different trials.

Calculation of the neural forward filter

The poststimulus time histogram r�(t) is the trial average of the
responses to a fixed stimulus (Rieke et al. 1997)

r��t� �
1

N
�
i�1

N

ri�t� (4)

where N is the total number of trials, and ri(t) is the time-dependent
firing rate of the neuron in trial i. For this analysis, we use discretized
time in bins of length 0.1 ms. Because the stimulus lasted 800 ms, ri(t)
is a string with 8,000 entries that are zero, except at those times where
a spike is emitted, where ri(t) is 1/(0.1 ms). When the number of trials
N is large, ri(t) represents the probability of generating a spike in (t,
t � dt). The average firing rate r0 is the temporal integral of r�(t)
divided by the total length of the interval.

The simplest approximation of the input-output relation of a cell is
to write r�(t) as the sum of a constant term and a stimulus-dependent
modulation with mean zero, that is

r��t� � r0 ��
��

��

h���s1�t � ��d� (5)

where s1(t) � s(t) –s0, and s0 is the temporal average of the time-
dependent stimulus s(t). The function h(�) is called the forward filter
of the cell (or as here, simply the filter). Equation 5 implies that the
spiking probability is particularly sensitive to those stimulus segments
that match the form of h(��). The negative sign of the argument
indicates that the filter is a time-inverted version of the preferred
stimulus of the cell.

The filter can be calculated from the correlation Crs��� � 
r�t�
s1�t � ��dt between stimulus and response and the stimulus autocor-
relation Css��� � 
s1�t� s1�t � ��dt. This is most easily done in the
frequency domain. With Ĉrs(f) denoting the Fourier transform of
Crs(�) and Ĉss(f) that of Css(�), the Fourier transform ĥ(f) of h(�) is
obtained as (Koch and Segev 1998)

ĥ� f � �
Ĉrs� f �

Ĉss� f �
(6)

Notice that these results can be extended beyond the linear approxi-
mation. Equation 6 is still valid when r�(t) � r0 is a static nonlinear
function of the convolution of h and s1. Even in more general cases,
where r�(t) is any nonlinear function of s(t), Eq. 6 gives the best linear
approximation of r�(t) in terms of smallest mean-square error.

In an extension of the forward-filter analyses, filters were also
calculated by considering only a subset of the spikes. This subset was
selected according to the jitter values j associated with the spikes, for
example, those spikes whose j lied within a specified range.

R E S U L T S

We study how well neural representations in the sensory
periphery match different stimulus environments. To this end, the
activity of auditory receptor neurons is recorded during a system-
atic exploration of the stimulus space. This allows us to study the
mapping between stimuli and responses. To characterize the
trial-to-trial variability of this mapping as well, each stimulus is
presented a large number of times. In Fig. 1, two example stimuli
are shown, together with the responses of one single receptor. The
poststimulus time histograms in the lowest panels show that the
stimulus introduces a strong temporal modulation of the spiking

FIG. 1. Auditory receptors can respond with remarkable precision to am-
plitude-modulated sound waves. Top: 100-ms fragments of two stimuli with
Gaussian amplitude distributions (standard deviation � � 6 dB in A and � �
12 dB in B) and cut-off frequency fC � 200 Hz. Middle: raster plots obtained
from responses of a sample cell on repeated presentations of stimuli shown
above. Spikes appear a short time after stimulus makes an upward excursion.
Latency mainly reflects spike propagation to the place of recording, the axon
of the receptor neuron. A comparison between C and D shows that the larger
standard deviation of stimulus B strongly increases spike-timing accuracy.
Bottom: poststimulus time histograms for responses shown in the middle.
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probability. In addition, the presence of a certain degree of scatter
in the raster plots (middle panels) indicates that the mapping
between stimuli and responses is not deterministic. A general
description of this mapping, hence, should be grounded on prob-
abilistic methods. Information theory is a branch of statistics that
provides rigorous answers to the problem of how faithfully mes-
sages are transmitted through a noisy channel and how much
information those messages encode. The power of the informa-
tion-theoretic methods reside in their generality: they make no
assumptions on the nature of the transduction process (Borst and
Theunissen 1999; Rieke et al. 1997; Strong et al. 1998). Only the
joint probability distribution P(r,s) of stimulus s and response r is
needed. This makes these methods good candidates for studying
the neural encoding of sensory stimuli (see Dayan and Abbot
2001; Rieke et al. 1997).

Within the probability-theoretic framework, we can address
key questions in a quantitative manner—what is the relevant
temporal resolution for information transmission and how
stimulus characteristics influence the trial-to-trial response
variability and information rate. The quality of stimulus en-
coding is assessed by computing the mutual information rate
between stimuli and responses (see METHODS). This allows us to
analyze the degree of statistical dependence p(r�s) between the
stimulus s and the stochastic neural response r, even if succes-
sive spikes are correlated (e.g., the coherent displacement of
successive spikes in Fig. 1C) or if the input-output mapping
includes sophisticated nonlinear transformations. In the ab-
sence of prior knowledge about the neural encoding process,
information theory is therefore our method of choice. Compar-
isons with biologically more intuitive response measures, such
as spike-time jitter, will reveal whether these highly reduced
measures capture the full complexity of the conditional prob-
ability distribution p(r�s) that underlies the information-theo-
retic approach.

Two qualitatively different processes influence the relation
between stimulus and response. First, if a sensory neuron is to
represent a large range of stimuli, it should have a rich
repertoire of activity patterns. This degree of complexity is
given by the total entropy rate Htotal of the responses. Second,
if a sensory neuron is to represent each sensory signal in a
reliable manner, repeated presentations of one stimulus should
elicit nearly identical responses. The effect of the trial-to-trial
variability in the neural representation is described by the noise
entropy rate Hnoise. As the difference of Htotal and Hnoise, the
mutual information provides a quantitative measure for the
balanced trade-off between these counteracting response as-
pects.

As an experimental system, we studied the auditory periph-
ery of L. migratoria, a well-established model system for
auditory processing in grasshoppers (Ronacher and Krahe
2000; Ronacher and Römer 1985; Stumpner and Ronacher
1991). Grasshoppers use acoustic courtship signals to call and
identify other members of their own species and to assess the
quality of potential mates (Balakrishnan et al. 2001; Ronacher
and Krahe 1998; von Helversen and von Helversen 1983). The
possibility of obtaining long, intracellular recordings from
auditory receptors, the comparatively simple statistical struc-
ture of their calling songs, and their straightforward behavioral
relevance make grasshoppers an ideal system for our study.

Temporal resolution relevant for information transmission

When grasshopper auditory receptors are stimulated with
amplitude-modulated (AM) signals, they generate spike trains
whose temporal pattern can be remarkably reproducible, as
shown in Fig. 1 for a sample cell. Figure 1, C and D, show the
responses to the two stimuli presented in Fig. 1, A and B. It is
readily seen that the amount of jitter in the trial-to-trial vari-
ability of the responses varies noticeably with the stimulus.

We define the amount of spike-time jitter j in a time window
spanning from time t0 to t0 � �w as the standard deviation of
the neural firing times within this interval. Here, �w is set to 5
ms (see METHODS). The mean jitter J is obtained by sliding t0
along the time axis and averaging over all the j values thus
obtained. In the example of Fig. 1D, we find J � 0.45 ms.
Furthermore, 20% of the j values are less than 0.25 ms. This
number should be compared with the time scale of the AM of
the stimulus, which is 5 ms, i.e., more than 20 times larger.

The large differences in spike-timing precision obtained for
different stimulus statistics suggests that the amount of jitter is
an important aspect of information transmission in different
stimulus environments. However, if low-jitter spikes are im-
portant, one should be able to find information about the
stimulus on time scales as small as a few tenths of a millisec-
ond. To study whether this is indeed the case, we estimated the
mutual information between the acoustic stimuli and the re-
sponses. To do so, each spike train was transformed into a
binary sequence where each digit denotes the presence or
absence of a spike within a time window of length �t (see
METHODS). Figure 2 shows that information rates increased for
progressively finer temporal resolution �t, even down to a
�t � 0.4 ms, the minimal value for which we can calculate the

FIG. 2. Information rate I as a function of the resolution �t for the sample
cell of Fig. 1 (Gaussian AM, � � 12 dB, fC � 200 Hz). Information rate
increases with resolution down to �t values as small as 0.4 ms, the smallest
time resolution leading to reliable estimates of information rate. There is no
sign of saturation, at small �t, indicating that the cell may be making use of
spikes with even higher accuracy to transmit information about sensory
stimulus.
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information rate reliably. Similar to results in other systems
(Liu et al. 2001; Panzeri et al. 2001; Reinagel and Reed 2000;
Strong et al. 1998), this finding suggests that temporal preci-
sion does contribute to information transmission. Specifically,
in this particular example, 60% of the j values were �0.45 ms.

Systematic exploration of the stimulus space

Grasshoppers generate calling songs by rasping their hind-
legs across their forewings. The resulting sound wave consists
of a broad-band carrier signal with frequencies in the range of
3–40 kHz, whose intensity is strongly modulated in time,
resulting in a characteristic rhythmic, chirping sound. When
presented with a male’s courtship song, female grasshoppers
respond with a different acoustic pattern, and the probability of
their response depends on the temporal properties of the male’s
call (Balakrishnan et al. 2001). Apparently, the amplitude
modulation of the call carries important cues about the male
singer (Machens et al. 2003). Therefore we explored the
stimulus space by varying the statistical properties of the
modulation, while keeping the carrier wave at the value where
each particular receptor is most sensitive. The stimuli consisted
of random AM waves characterized by three parameters:
shape, standard deviation, and cut-off frequency of the ampli-
tude modulation.

Different receptors vary in their cellular properties, resulting
in different response characteristics. To identify the effect of
the stimulus on the response (despite the cell-to-cell variabil-
ity), each cell was presented with two stimuli. One stimulus
was the same for all cells: a Gaussian amplitude distribution
with standard deviation � � 6 dB and cut-off frequency fC �
200 Hz, which is shown in Fig. 3A. This is henceforth called
the standard stimulus. The other signal, the comparison stim-

ulus, was varied from cell to cell. Three types of comparison
stimuli were used, as depicted in Fig. 3, B–D. These stimuli
differed from the standard stimulus in one of the following
aspects.

FORM OF THE AMPLITUDE DISTRIBUTION. The rhythmic se-
quence of high- and low-intensity segments found in natural
songs gives rise to a bimodal amplitude distribution. To deter-
mine whether this particular distribution has an effect in the
quality of information transmission, in some of the cells, the
standard (Gaussian) stimulus was compared with a stimulus
with the same standard deviation and cut-off frequency, but
with the bimodal amplitude distribution taken from a typical
grasshopper song (Fig. 3B).

STANDARD DEVIATION � OF THE AMPLITUDE DISTRIBUTION. In
another set of cells, the standard stimulus was compared with
a stimulus that was also Gaussian and with equal cut-off
frequency but with a different standard deviation. This allowed
us to modify the probability of finding sharp deflections in the
signal. Whereas the width � of the standard stimulus was fixed
to 6 dB, the comparison stimulus had either � � 3 dB or � �
12 dB. An example of � � 12 dB is shown in Fig. 3C.

CUT-OFF FREQUENCY FC OF THE AMPLITUDE MODULATION. In a
third set of cells, the standard stimulus was compared with a
Gaussian signal with equal SD but different cut-off frequency.
The cut-off frequency of the standard stimulus was 200 Hz,
that is, roughly the highest frequency found in the power
spectrum of natural songs. Comparison stimuli included cut-off
frequencies of 25, 100, 400, and 800 Hz. An example of fC �
400 Hz is shown Fig. 3D. As the cut-off frequency increases,
the duration of the fluctuations in the stimulus decreases at
1/fC.

How should the mean sound intensities of the standard and
comparison stimulus be chosen? In the natural environment,
sound intensities depend on the distance between sender and
receiver, so there is no natural value for the mean. Hence,
initial calibration of the mean sound intensities (see METHODS)
was designed to yield the same firing rate in response to both
stimulus ensembles, thereby eschewing the strong effect of the
firing rate on the information transmission rate (Borst and Haag
2001). As desired for this study, our results thus directly reflect
the influence of the higher-order stimulus statistics on the
transmitted information and are not compromised by spurious
firing rate effects. As the average firing rate of the studied
receptor neurons ranges from about zero to several hundred
Hertz depending on the energy of the sound signal (Gollisch
et al. 2002), we aimed at natural range of firing rates around
100 Hz.

Influence of stimulus characteristics on the information rate

The example of Fig. 1 suggests that the properties of the
acoustic stimuli strongly influence the precision in the neural
response. To study the effects of different stimuli in a system-
atic fashion, we compared the information rates for the stan-
dard and comparison stimuli in all recorded cells. Figure 4
shows the difference between the information rates obtained in
the two stimulus conditions as a function of the rate of the
standard stimulus. Hence, if a given cell transmits information
at a higher (lower) rate when driven with the comparison
stimulus, it appears above (below) the horizontal line.

FIG. 3. The 3 directions in stimulus space explored in this study: form of
amplitude distribution, its standard deviaiton �, and cut-off frequency fC of the
amplitude modulation. Insets: respective amplitude distributions (left) and
100-ms examples of amplitude modulation (right). A: amplitude modulation of
standard stimulus: Gaussian distribution with � � 6 dB and cut-off frequency
fC � 200 Hz. B: bimodal distribution, as found in natural mating songs of
grasshoppers, with � � 6 dB and cut-off frequency fC � 200 Hz. Bimodal
distributions have a smaller probability of finding stimulus segments with large
amplitudes. C: Gaussian stimulus with � � 12 dB and fC � 200 Hz. By
changing the standard deviation of the signal, the probability of finding sharp
excursions is modified. D: Gaussian stimulus with � � 6 dB and fC � 400 Hz.
Changing the cut-off frequency of the signal allows one to modify typical time
scale of the stimulus.
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Figure 4A shows that the bimodal amplitude distribution led
to lower information rates than the standard Gaussian stimulus
in all tested cells (n � 8). This is true, although both the
standard and the comparison information rates varied more
than twofold from cell to cell. Here, each data point corre-
sponds to a different cell. A paired t-test showed a significant
difference in the values obtained for the two stimulus condi-
tions (tdf � 8 � 5.308, P � 0.01). On average, the information
rates of the bimodal stimulus was 85 � 4% of the one
transmitted by the Gaussian distribution.

Figure 4B depicts data from experiments where responses to
amplitude modulations with � � 6 dB (standard stimulus) were
compared with stimuli with either � � 3 dB or � � 12 dB
(comparison stimulus). The information rate of each cell was
highest for the stimulus with the largest standard deviation. A
paired t-test revealed that this effect is significant (for � � 12
dB: tdf � 6 � �3.615, P � 0.05, whereas for S � 3 dB, tdf �

5 � 19.04, P � 0.001). The information transmitted about the
stimulus constructed with � � 3 dB was, on average, 51 �
4.9% (n � 6) of the information transmitted about the standard
stimulus. For � � 12 dB, the ratio was 124 � 6.7% (n � 8).

Therefore within the tested range, the information rate in-
creased with the standard deviation �, that is, with the size of
the amplitude deflections in the stimulus.

The above analysis shows that stronger amplitude modula-
tions increase the rate of information transmission. Is there a
similar influence of the speed at which the stimulus amplitude
fluctuates? To study this question, we compared the standard
Gaussian stimulus (containing spectral components up to a
cut-off frequency fC � 200 Hz) with slower or faster amplitude
modulations that were normalized such that all stimuli had the
same variance. As seen in Fig. 4C, comparison stimuli with
cut-off frequencies of fC � 25, 100, 400, or 800 Hz yielded
significantly lower information rates than the standard stimulus
for most receptors (tdf � 6 � 6.973, P � 0.001; tdf � 7 � 3.534,
P � 0.05; tdf � 6 � 2.580, P � 0.05; tdf � 7 � 3.662, P � 0.01,
respectively). Exceptions to this rule were found in 4 of 30
cases, where the comparison stimulus produced larger infor-
mation rates than the standard stimulus (1 cell with fC � 100
Hz, 2 with fC � 400 Hz, and 1 with fC � 800 Hz). The ratio of
the information rate of the comparison stimulus to the standard
one were, on average, 63 � 4.2% (fC � 25 Hz, n � 7); 92 �
2.3% (fC � 100 Hz, n � 8); 88 � 3.9% (fC � 400 Hz, n � 7);
and 75 � 6.7% (fC � 800 Hz, n � 8).

Random stimuli containing fast variations are less predict-
able and therefore have a higher entropy rate than slow stimuli.
As such, they could be expected to lead to a higher information
transmission rate than slower stimuli. Interestingly, I started to
drop as fC grows beyond 200 Hz, showing that there is an
optimal time scale for stimuli to be encoded with high effi-
ciency.

We next asked whether the dependence of the information
rate on the stimulus reflects a variation in the richness of the
neural code Htotal or on its trial-to-trial variability Hnoise. In Fig.
5 we separately present the variations of the total and the noise
entropy rates when switching from the standard to the com-
parison stimulus. The stimulus conditions are the same as in
Fig. 4. The symbols with a black upper half depict the value of
the total entropy rate, whereas the gray symbols stand for the
noise entropy rate. The three panels of Fig. 5 show that, when
the stimulus varies from the standard to the comparison con-
dition, the total entropy remained roughly unchanged; each
type of black and white symbol is similarly scattered below and
above the horizontal line. A paired t-test showed that the mean
total entropy in response to the standard stimulus was not
significantly different from that in response to the comparison
stimulus (P  0.1) in all comparisons except for fC � 25 Hz.
In contrast, each gray symbol appears preferentially either
below or above the horizontal line, depending on the particular
type of comparison stimulus. A paired t-test showed that the
mean noise entropy in the standard stimulus differs signifi-
cantly from that in the comparison stimulus (P � 0.05) for all
comparisons except for fC � 400 Hz. Hence, under our exper-
imental conditions, the stimulus statistics influenced the infor-
mation transmission rate by mainly affecting the value of the
noise entropy rate and not the total entropy rate.

Relation between spike-time jitter and information-
theoretic measures

The noise entropy rate is influenced by the stimulus statis-
tics. How is this dependence reflected in the spike train? To

FIG. 4. Comparison of information rates. For the 3 stimulus directions of
Fig. 3, the difference between information rate in response to comparison
stimulus and standard stimulus (vertical axis) is drawn against the rate for
standard stimulus (horizontal axis). A: amplitude distribution. Gaussian stim-
ulus always induced slightly higher information rates than bimodal stimulus. B:
standard deviation. Here, different symbols represent different comparison
stimuli: squares, � � 12 dB; circles, � � 3 dB. As � grows, so do information
transmission rates. C: cut-off frequency. Squares, fC � 25 Hz; circles, fC � 100
Hz; triangles, fC � 400 Hz; diamonds, fC � 800 Hz. In almost all cases,
information rates are higher for comparison stimuli than for standard stimulus.
Together, these data show that within the explored stimulus space, Gaussian
stimuli with a large AM and a cut-off frequency of 200 Hz are transmitted best.
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study this question, we calculated the jitter distribution P(j)
corresponding to the whole collection of spikes emitted by a
cell to a given stimulus. This distribution is defined as the
probability of finding a spike with an amount of jitter j (see
METHODS). Figure 6 shows an example corresponding to the
same cell and stimulus condition as in Fig. 1D and shows that
jitter values as low as 0.15 ms can be achieved. The jitter
distribution P(j) was calculated for all cells and stimulus

conditions. In all cases, unimodal distributions were found.
The maximum of P(j) was reached for some j between 0.35 and
1.9 ms, depending on the cell. The mean jitter J varied between
0.45 and 1.3 ms, and many recordings contained remarkably
precise spikes that jittered as little as 0.15 ms.

As the stimulus statistics are altered, the mean jitter J
covaries with the mutual information rate in a remarkably
consistent way. This becomes apparent in Fig. 7, where the
dependence of J on the stimulus conditions (top) is compared
with the mean information rate I (bottom). For simplicity, only
cell averages are depicted, and the error bars represent the SD
from the average. For all stimulus variations, one can readily
see that J and I exhibit opposite trends: the information rate
increases whenever the mean jitter decreases.

As a summary of the results obtained thus far, Fig. 8 shows
the effect of the mean amount of jitter on the information rate,
the total entropy rate, and the noise entropy rate (left). For
comparison, the effect of the average firing rate is also shown
(right). The mean jitter J is noticeably correlated with the noise
entropy Hnoise (Fig. 8C). The total entropy rate does not exhibit
any clear dependence on J (Fig. 8B). As a result, the mutual
information I (obtained by subtracting Hnoise from Htotal) is
strongly correlated with J (correlation coefficient �0.888,
significant at the 0.01 level), as shown in Fig. 8A. For the
present system, the rather abstract mutual information can thus
be largely reduced to the biologically more intuitive, yet less
general, measure of spike-time jitter. In addition, Fig. 8E
shows that the total entropy rate is accurately predicted by the
firing rate of the cell as has been reported previously (Borst and
Haag 2001). The noise entropy rate, on the other hand, bears no
obvious dependence on the firing rate of the cell (Fig. 8F).
Together, these two effects result in a mutual information rate
that is only weakly correlated with the firing rate (Fig. 8D).

Artificial jitter

In the previous section, the mutual information rate I was
shown to be tightly related to the mean amount of jitter J in the
neural responses. To further evaluate the relationship between
I and J, we added artificial jitter to the neural response. The
temporal location of each spike was randomly altered by a

FIG. 5. Comparison of entropy rates. Similar to Fig. 4, the difference of
entropy rates in response to the comparison stimulus and the standard stimulus
(vertical axis) are contrasted against the rates for the standard stimulus
(horizontal axis) for each cell. Gray symbols, noise entropy rate; black and
white symbols, total entropy rate. The noise entropy rate is noticeably modu-
lated by the stimulus and is lowest for Gaussian stimuli with large amplitude
modulation; on the other hand, the total entropy rate does not show a strong
systematic trend.

FIG. 6. Distribution of the spike-time jitter P(j) of the sample cell of Fig. 1.
Mean jitter is J � 0.45 ms. However, a large fraction of spikes have a standard
deviation �0.25 ms. This shows that the neuron encodes different parts of
time-varying stimulus with different temporal precision.

FIG. 7. Relation between spike-time jitter and transmitted information.
Population average of jitter J (top) and information rate I (bottom) as a function
of statistical properties of stimulus: form of amplitude distribution (left), its
width � (middle), and stimulus cut-off frequency fC (right). Error bars repre-
sent SD of averages. Data show that I and J are strongly anticorrelated.
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value drawn from a flat probability distribution in a small
interval (t0 –�, t0 � �) centered at the true spike time t0. Figure
9A shows the dependence of the mutual information I on the
bin size �t used for binning the spike train (see METHODS) for a
sample cell. Results for the original spike train are represented
by squares. The circles show a response set that has been
jittered with � � 0.5 ms. For large values of �t, the mutual
information of both sets coincided. However, as �t approaches
� � 0.5 ms, the information provided by the response with
artificial jitter was noticeably lower than that of the true spike
train. When the spike train was modified by a larger jitter � (1
ms, triangles) the discrepancy with the original information
rate was even more evident. Notice that the value �t where the
two information values began to differ depended on the size of
the added jitter �.

Performing the same analysis on all recorded cells confirmed
the findings from the above example. Figure 9B shows a
histogram with the original information values for the whole
collection of cells and all stimulus conditions. When uniform
jitter with � � 1 ms was added to each response, the corre-
sponding information values dropped as depicted in Fig. 9C.
The number of cases with a mutual-information rate more than
300 bits/s was markedly reduced, and correspondingly, the
fraction less than 150 bits/s was noticeably increased.

Random manipulations of spike trains have often been used
to selectively disrupt some features in the responses but not
others (Furukawa and Middlebrooks 2002; Hatsopoulos et al.
2003; Lu and Wang 2003; Reinagel and Reid 2000). Adding
jitter is equivalent to convolving the original probability den-
sity of generating a spike with a new, artificial distribution [in

our case, a flat distribution in (t0 –�, t0 � �)]. This operation,
however, only introduces noticeable changes to those distribu-
tions that were originally narrow. In other words, the spikes
that were imprecise from the start remain roughly unchanged.
In contrast, the alignment of precise spikes is markedly de-
stroyed. The drop in information rates obtained with jittered
spike trains confirms that the mutual information rate is
strongly affected by the fraction of highly precise spikes.

Stimulus features that underlie precise spikes

To uncover those stimulus features that are represented by
the most accurate spikes, we took a more detailed look at the
correspondence between stimuli and responses. To do so, we
analyzed the integration properties of the receptors by calcu-
lating their linear forward filter characteristics. The linear filter
of each cell can be easily obtained from the correlation be-
tween stimuli and responses (see METHODS). This correlation
quantifies the degree up to which spikes are locked to a
particular stimulus feature. The shape of the time-inverted filter
represents the stimulus feature that, within the linear hypoth-
esis, drives the cell optimally.

However, only those frequency components of the filter that
were actually present in the stimulus can be obtained. As the
cut-off frequency of the stimulus increases, the filter must
therefore reveal its high-frequency content. Our data indicate
that the filter has a natural frequency cut-off, as shown in Fig.
10 for a sample cell whose recording lasted long enough to test
all five different cut-off frequencies. As fC grows from 25 to
200 Hz, the spectrum of the filter widens in frequency space.
However, for fC � 400 Hz and fC � 800 Hz, the fraction of
power in the upper half of the frequency range is comparatively
small. This means that the filters are dominated by contribu-
tions in the range from zero to 	200 Hz. In Fig. 10B, the
temporal behavior of the filters is shown. For concreteness, we
defined the preferred stimulus rise time as the interval between
the first minimum to the right of the filter’s global maximum

FIG. 9. Influence of artificial spike-time jitter. A: information rate I as a
function of resolution �t used to bin neural spike trains for a sample cell.
Different traces show results from original spike train (squares) and for two
artificial spike trains, where each spike has been randomly displaced using a
flat probability distribution between t0 –� and t0 � �. Circles, � � 0.5 ms;
triangles, � � 1 ms. Data indicate that whenever �t is smaller than �, artificial
jitter decreases transmitted information. B: histogram of original information
transmission rates of all cells and all stimulus conditions. C: after each spike
has been randomly displaced in interval between t0 –� and t0 � �, information
rates drop.

FIG. 8. Population data for quality of neural encoding as a function of
spike-time jitter (A–C) and mean firing rate (D–F). Each data point represents
a single cell in a particular stimulus condition. The mutual information rate I
(A and D) is the difference between total entropy rate Htotal (B and E) and noise
entropy rate Hnoise (C and F). Information rate changes with firing rate and
jitter. This is caused by two different factors: increases in firing rate do not
affect noise entropy (F) but are accompanied by larger total entropies (E). On
the other hand, increases in mean jitter do not affect total entropy (B) but are
accompanied by larger noise entropies (C). As a consequence of both factors,
mutual information I is strongly correlated with J (A) but only weakly
correlated with firing rate (D).
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and this maximum. In terms of the preferred stimulus feature,
this corresponds to an upward stimulus deflection. As the
cut-off frequency of the stimulus ensemble increases, the cell’s
preferred rise time settles to a value between 2 and 3 ms. By
averaging all cells driven with 400- and 800-Hz cut-off fre-
quencies, the average preferred rise time was estimated as
2.3 � 0.5 ms. We conclude that spikes preferentially lock to
upward stimulus deflections whose rise time lasts between 2
and 3 ms.

Can the preferred locking of spikes to these particular
deflections also explain the optimal information transmission
obtained for fC � 200 Hz? To answer this question, we
analyzed the complete distribution P(j). Figure 11 A depicts
P(j) for a sample cell. The action potentials fired by this cell
were ranked according to the size of their jitter. From this
ranking, two subsets of spikes were extracted, each of which
defined a new, artificial spike train: the precise spike train was
constructed from the 15% of spikes with the lowest amount of
jitter (the dark bars on the left of Fig. 11A, corresponding to j �
0.25 ms). This was done for each one of the N trials recorded
in the experiment. Similarly, imprecise spike trains were con-
structed based on the 15% of spikes with the largest amounts
of jitter (the dark bars on the right of Fig. 11A, with j � 1.25
ms). We asked whether the average stimulus segment trigger-
ing exact spikes differed from that eliciting inexact responses.
To tackle this issue, the forward filters associated with the
two separate subsets of spikes were calculated and are
shown in Fig. 11B. Precise spikes occurred in response to
larger stimulus excursions compared with imprecise spikes.

More generally, if the jitter of the spike subset used to
calculate the filter was increased, the height of the filter
decreased (Fig. 11C).

As revealed by the spike-resolved analysis, spikes were
locked to amplitude upstrokes whose rise time lasted between
2 and 3 ms, and the locking improved with increasing size of
the upstroke. With this insight, we can finally return to the
question of why information transmission is optimal for stimuli
with fC � 200 Hz, even if faster stimuli have higher entropy
rates. For a cut-off frequency of 25 or 100 Hz, the stimulus
only contains slow amplitude modulations, and none of the
optimal 2- to 3-ms upstrokes. As the cut-off frequency was
increased to 200 Hz, the stimulus exhibited more and more of
the preferred features and thereby generates more accurate
responses. As the cut-off frequency grows further, even faster
modulations are incorporated. However, within the framework

FIG. 11. A: stimuli triggering precise and imprecise spikes. A: probability
distribution of finding a spike with jitter j, for a cell driven by a stimulus with
Gaussian amplitude distribution (� � 6 dB) and fC � 800 Hz. The most and
least precise 15% of spikes are shown in black, corresponding to j �0.25 and
�1.25 ms, respectively. B: filters corresponding to subset of precise (full line)
and imprecise (dashed line) spikes. Exact spikes occur in response to larger
stimulus excursions compared with inexact spikes. C: height of filter as a
function of mean jitter of subset of spikes used to compute filter. Here, each
data point corresponds to 20% of spikes. This analysis reveals that size of rapid
amplitude modulations strongly influences temporal precision of elicited action
potentials.

FIG. 10. Stimulus features triggering action potentials. A: power spectra of
forward filters of a sample cell for different stimulus cut-off frequencies fC. As
fC grows from 25 to 200 Hz, spectrum noticeably widens. Additional increases
of cut-off frequency result in rather small contributions in band between 200
and 400 Hz and almost no effects beyond 400 Hz. This finding implies that
there are hardly any high-frequency components in filters. B: temporal char-
acteristics of filters corresponding to spectra shown in A. Rise times, defined as
interval between 1st minimum to the right of maximum and maximum are
given in milliseconds in the left top corners.

2549SPIKE-TIMING PRECISION AND CODING EFFICIENCY

J Neurophysiol • VOL 95 • APRIL 2006 • www.jn.org

 on D
ecem

ber 12, 2010
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org/


of a linear filter, all stimulus deflections lasting less than about
2 ms are virtually filtered out by the cell. However, because the
variance of the stimulus was kept fixed as the cut-off frequency
varies, these rapid deflections, although innocuous in driving
the cell, absorb some of the stimulus power and thereby leave
the relevant stimulus frequencies with less remaining power.
Hence, even though the optimal 2- to 3-ms excursions are still
present, they have smaller amplitudes than for fC � 200 Hz. As
a consequence, for fC  200 Hz, time locking begins to
deteriorate, and information transmission rates drop.

D I S C U S S I O N

The statistics of sensory stimuli or synaptic inputs have a
strong influence on spike-time jitter (Bair and Koch 1996;
Bryant and Segundo 1976; de Ruyter van Steveninck et al.
1997; Mainen and Sejnowski 1995; Warzecha et al. 2000). The
stimulus statistics also affect the amount of information carried
by a spike train (Lewen et al. 2001; Machens et al. 2001; Rieke
et al. 1995; Vinje and Gallant 2000). By quantitatively assess-
ing how this information depends on spike-time jitter, this
study investigated the relation between both observations in the
context of sensory adaptation to natural stimulus environments.

As shown by two independent analyses, spike-time jitter has
indeed a strong effect on the transmitted information. First,
there is a tight correlation between those responses where the
amount of jitter was low and those where the information
transmission rate was high (Fig. 8A). Second, adding artificial
jitter to the responses revealed that information rates are
considerably reduced if no precise spikes remain (Fig. 9).
Together, these results show that spike-time precision plays a
crucial role for neural information transmission in the studied
system.

The biophysical noise sources contributing to spike-time
jitter in the studied receptor cells may reside in the mech-
anosensory transduction or in the spike-generating mecha-
nisms. Our black box analysis of the input-output transforma-
tion does not allow us to distinguish between these possibili-
ties. To further localize the origin of the measured spike-time
variability, dendritic recordings of the transduction currents or
interferometric measurements of tympanal vibrations would be
needed.

Our data also suggest how the stimulus statistics affect
information transmission; by modulating spike-time jitter, the
external signal determines how often precise responses occur
and thereby influences the rate of information transmission
(Fig. 7). Further analysis of the responses revealed that the
effect of spike-time jitter on information rates is mediated
through the noise entropy of the response (Fig. 8); the total
response entropy, on the other hand, did not vary when the
stimulus type was changed (Fig. 5). In other words, stimulus
types that lead to higher rates of information transmission do so
not because they generate a richer repertoire of response
patterns but because these patterns are less noisy.

The fact that the stimulus type has little influence on the
richness of neural responses may come as a surprise in view of
previous studies (see, e.g., Lewen et al. 2001). As pointed out
by Borst and Haag (2001), however, information transmission
can be strongly influenced by the average firing rate because
higher rates allow a neuron to employ a larger variety of
response patterns. To study the effect of stimulus statistics on

information transmission beyond these manifest effects of
firing rate, our experiments were designed to yield the same
firing rate irrespective of the specific stimuli that were com-
pared for a given neuron. Under this condition, the total
entropy did not differ for different stimulus types. In this
system therefore, stimulus statistics do not influence the com-
plexity of neural responses, apart from effects mediated
through firing-rate changes. The two quantities governing in-
formation transmission—total entropy and noise entropy—
therefore seem to be determined by two different stimulus
characteristics—overall stimulus intensity and temporal stim-
ulus variations, respectively.

One may wonder whether the correlation between spike-
time jitter and rate of information transmission is a trivial fact
to be expected for any coding scheme. Although this seems
plausible, it is not generally true. One can easily devise coding
schemes for which the information transmission rate does not
depend on the neural output jitter. The simplest case may be
the classical rate code where no information is found on small
time scales (Shadlen and Newsome 1998). For a sensory
neuron, this situation could occur if the transduction process
included a temporal low-pass filter. The observed reduction of
information rates with increasing jitter, however, indicates that,
at least for this system, the relevant variable in information
transmission is indeed the fine temporal placement of spikes.
Notice that the transmitted information can also differ for
responses to two stimulus ensembles that yield the same
average spike-time jitter. Particular spikes cannot only jitter
across trials, they can also be completely absent in some trials.
These “missing spikes” do not influence the jitter measure, but
clearly affect the information transmitted, and could, in prin-
ciple, explain some of the variance observed in Fig. 8C.

We conclude that for the auditory system in this study,
results obtained using the simple and biologically inspired
measure of spike-time jitter are in agreement with the results
obtained from a full information-theoretic analysis. However,
as shown by the example of “missing spikes,” spike-timing
precision and transmitted information need not go hand in
hand. How closely both measures are related in other sensory
systems remains an open question that needs to be studied case
by case.

Biological implications

As suggested by Laughlin (2001) and Schreiber et al. (2002),
generating spikes with high temporal accuracy is metabolically
expensive. An energy-efficient representation of the natural
environment might therefore require a careful match between
the most important stimuli and the most accurate responses.
We therefore extended the concept of a spike-triggered average
such that the average was based on the most (or least) precise
spikes only. This showed that responses with small spike-time
jitter were preferentially elicited by strong upward stimulus
deflections lasting between 2 and 3 ms.

These acoustic features have an important behavioral rele-
vance, because natural songs are structured in syllables whose
steep and often overshooting onsets last for one or at most a
few milliseconds. Previous results have shown that behavior-
ally relevant cues about a grasshopper song are contained in the
structure and temporal location of these onsets (Balakrishnan et
al. 2001; Krahe et al. 2002). Stimulus-dependent spike-time
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jitter at the sensory periphery might therefore provide a means
to encode behaviorally relevant stimuli such that those stimuli
can be processed with great efficiency by downstream neurons
without wasting metabolic resources to precisely represent less
important stimuli.

Within the tested stimulus space, the ensemble with the most
frequent instances of these features was a stimulus with Gaus-
sian amplitude modulation, large standard deviation, and a
cut-off frequency of 200 Hz. Bimodal distributions, although
coinciding with the AM of natural grasshopper songs, were
less informative. However, the preference for large amplitude
excursions suggests that the system might not have evolved to
provide an accurate representation of the entire natural distri-
bution of amplitudes but rather to identify specific stimulus
features, which are signaled by pronounced upstrokes of the
amplitude. Because the Gaussian distribution contains a larger
high-amplitude tail, strong upstrokes appear more frequently
than in the bimodal stimulus distribution. This also explains
why in a previous study, naturalistic stimuli with large ampli-
tude modulations led to higher information rates and coding
efficacies than artificial stimuli with smaller amplitudes mod-
ulations (Machens et al. 2001).

Our unexpected finding that naturalistic stimuli are subop-
timal compared with Gaussian stimuli with equal variance
suggests that sensory systems may be constrained to work as
feature detectors for just a few salient characteristics of the
input signal. To create these features, natural stimuli use a
bimodal amplitude distribution, which may ultimately result
from constraints on the sender and not the receiver. After all,
grasshoppers are not capable of producing arbitrarily large
sound amplitudes and may aim for energetically efficient
signals that nevertheless retain precisely encoded amplitude
excursions. This hypothesis could be tested with future exper-
iments that study how spike-time jitter varies when the maxi-
mal signal amplitude is constrained.

Auditory code

Many recordings contained at least some spikes that jitter as
little as 0.15 ms. This is a surprising finding, given that the
spike-time jitter is an order of magnitude smaller than typical
stimulus time scales. What stimulus aspects are being encoded
on such small time scales? Obviously, precise spikes convey
accurate information about when a particular stimulus feature
occurs. This is of particular importance for grasshoppers who
rely on the detailed temporal structure of conspecific commu-
nication signals for mate finding (von Helversen and von
Helversen 1997) and therefore need to tag events that mark the
signal substructure.

Precise spikes may also help in detecting the presence of
specific stimulus features, for example through a coincidence-
detector read-out. Ronacher and Römer (1985) have speculated
that such a mechanism could underlie the females’ rejection of
male grasshopper courtship songs that are interspersed with
short millisecond gaps. The precise spiking in response to the
short amplitude excursions may be critical for the operation of
such a detection mechanism. Finally, precise spiking appears to
be crucial for sound localization in many auditory systems
(Grothe and Klump 2000; Mason et al. 2001). Spikes that
appear in relative isolation, e.g., following an amplitude ex-
cursion after a quiet period, may be most suited for a compar-

ison in timing between the left and the right ear. One would
thus expect that these spikes show particular temporal preci-
sion, whereas highly precise firing may be of lesser importance
for other stimulus parts.

These hypotheses about the functional role of information
transmission by precise spiking are directly related to the
question of how the information in the spike train is read out by
subsequent neural processing levels. Acridid grasshoppers pos-
sess about 50 receptor neurons per ear. Their axons converge
onto local interneurons in the auditory neuropil within the
metathoracic ganglion. Depending on the specific convergence
pattern, these secondary neurons will be driven in a highly
reliable manner by low-jitter receptor spikes; high-jitter spikes,
on the other hand, may not trigger any response of a down-
stream coincidence detector. Highly precise spikes found in
auditory cortex (DeWeese et al. 2003) may be based on a
similar mechanism.

The auditory neuropil of grasshoppers allows the identifica-
tion of single neurons with distinct response characteristics.
Because we now know how the stimulus statistics influence the
responses in the receptor cell layer, it should be possible to
systematically search for effects in the responses of those
neurons that read out the receptor spike trains. Ultimately, this
knowledge should help to reveal the mechanisms of fundamen-
tal computations carried out by this auditory model system,
such as sound localization and time-warp-invariant song rec-
ognition.
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