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Abstract The space of sensory stimuli is complex and
high-dimensional. Yet, single neurons in sensory sys-
tems are typically affected by only a small subset
of the vast space of all possible stimuli. A proper
understanding of the input–output transformation rep-
resented by a given cell therefore requires the iden-
tification of the subset of stimuli that are relevant in
shaping the neuronal response. As an extension to the
commonly-used spike-triggered average, the analysis
of the spike-triggered covariance matrix provides a
systematic methodology to detect relevant stimuli. As
originally designed, the consistency of this method is
guaranteed only if stimuli are drawn from a Gaussian
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distribution. Here we present a geometric proof of
consistency, which provides insight into the foundations
of the method, in particular, into the crucial role played
by the geometry of stimulus space and symmetries in
the stimulus–response relation. This approach leads to
a natural extension of the applicability of the spike-
triggered covariance technique to arbitrary spherical or
elliptic stimulus distributions. The extension only re-
quires a subtle modification of the original prescription.
Furthermore, we present a new resampling method for
assessing statistical significance of identified relevant
stimuli, applicable to spherical and elliptic stimulus dis-
tributions. Finally, we exemplify the modified method
and compare it to other prescriptions given in the
literature.

Keywords Covariance analysis · Spike-triggered
average · Receptive field · Linear-nonlinear model

1 Introduction

Neurons in sensory systems are often exquisitely tuned
to specific stimulus features. Thus, a first step in the
characterization of their input–output transformation
is to identify which aspects of the stimulus affect a
neuron’s activity level and which do not. As the space
of possible stimuli is typically high-dimensional, an ex-
haustive exploration of all candidate stimuli appears
impractical. But fortunately for neuroscientists, indi-
vidual neurons often seem to be remarkably selective
and only care about subspaces of low dimensional-
ity. The identification of such low-dimensional spaces
of relevant stimuli is a crucial challenge in sensory
neuroscience.

http://fisica.cab.cnea.gov.ar/estadistica/ines/stc/software.html
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In the simplest scenario, an analysis may aim at iden-
tifying a single relevant dimension in stimulus space,
corresponding to a particular stimulus feature. This
is suited, for example, for neurons whose response
properties are well captured by their receptive fields.
Neurons in the early visual system are often described
by their spatio-temporal receptive fields (Hartline 1940;
Kuffler 1953; Hubel and Wiesel 1962; Meister and
Berry 1999; Reich et al. 2000) and neurons in the audit-
ory system by their spectro-temporal receptive fields
(Eggermont et al. 1983a, b; Kim and Young 1994;
deCharms et al. 1998). A standard technique for as-
sessing the receptive field from electrophysiological
experiments is to measure the spike-triggered average
(STA) under stimulation with a broad-band signal
(de Boer and Kuyper 1968; Bryant and Segundo
1976; de Boer and de Jongh 1978; Eggermont
et al. 1983a; de Ruyter van Steveninck and Bialek
1988; Chichilnisky 2001; Nykamp and Ringach 2002;
Schwartz et al. 2006), typically white noise. The tech-
nique largely owes its immense popularity to its com-
putational simplicity, obviating the need for complex
parameter fitting. The analysis consists of collecting all
stimulus segments that precede a spike and averaging
them together. This amounts to correlating the mea-
sured spikes with the applied stimulus, so the method
also falls under the name of “reverse correlation”.

In many cases, however, a single stimulus feature
is insufficient to describe a neuron’s response char-
acteristics. If the cell is sensitive to several features
and pools them in a nonlinear fashion, its stimulus–
response relation may not be well captured by just
the receptive field. A well-known example is the en-
ergy model of complex cells in visual cortex (Adelson
and Bergen 1985), which comprises two spatial Gabor
filters whose outputs are squared before summation.
As the model responds equally to positive and negative
visual contrasts, the STA is identical to zero. Other
methods are thus required to characterize neurons with
symmetric response characteristics. In other cases, the
STA may provide an approximate model of the cell’s
stimulus–response relation, but adding further stimulus
components considerably improves the accuracy of the
model.

For these reasons, spike-triggered covariance (STC)
analysis has emerged as a popular extension of the
STA (Bryant and Segundo 1976; de Ruyter van
Steveninck and Bialek 1988; Paninski 2003; Bialek and
de Ruyter van Steveninck 2005; Brenner et al. 2000;
Schwartz et al. 2002; Rust et al. 2004; Simoncelli et al.
2004). In STC analysis, the stimulus segments that
precede a spike are characterized through a principal
component analysis, which allows the extraction of mul-

tiple relevant stimulus dimensions. The basic idea is to
detect differences in variance between the distribution
of spike-producing stimulus segments and the prior
distribution of all stimulus segments. Although alter-
native techniques exist that are applicable under more
general stimulation (Paninski 2003; Paninski et al. 2004;
Sharpee et al. 2004; Pillow and Simoncelli 2006; Park
and Pillow 2011) or in connection with additional post-
spike dynamics (Keat et al. 2001; Aldworth et al. 2005;
Pillow et al. 2005, 2008; Dimitrov and Gedeon 2006;
Gollisch 2006), STC analysis has retained considerable
popularity, just like the STA, because of its relative
computational simplicity.

The statistics of the applied stimulus play an im-
portant role for applying STA and STC analysis. For
neurons whose firing probability depends on a single
stimulus direction, the STA provides a consistent and
unbiased estimator of the relevant direction when the
probability distribution of all applied stimuli displays
spherical symmetry (Chichilnisky 2001; Paninski 2003).
This condition states that all stimulus segments that
have the same magnitude (i.e. the same Euclidean
norm) must also have the same probability of occur-
rence. If the distribution of stimuli is not spherically
symmetric, the STA is typically biased, as it deviates
in a systematic fashion from the relevant stimulus di-
mension. Moreover, as this bias does not depend on the
amount of available data, the estimate provided by the
STA is then not consistent. The simplest way to fulfill
the criterion of spherical symmetry is to draw each stim-
ulus component from the same Gaussian distribution.
But there are, of course, many other ways to construct
spherical distributions of stimuli.

Via a simple extension, it is straightforward to apply
STA analysis also to stimuli with an elliptic distribution.
Here, elliptic distribution refers to any distribution that
can be obtained from a spherical distribution by a linear
transformation that stretches or compresses individual
directions in stimulus space. The spectrum of the stimu-
lus is therefore non-white, and different stimulus com-
ponents are correlated with each other. To apply STA
analysis, the stretching transformation simply has to be
“undone” after the spike-producing stimulus segments
have been averaged (Theunissen et al. 2001; Paninski
2003; Schwartz et al. 2006).

Surprisingly, the requirements concerning the stimu-
lus distribution are more restrictive for STC analysis,
where stimuli need to follow not just a spherically
symmetric, but a Gaussian distribution to guarantee
that the analysis provides a consistent estimator of the
relevant stimulus space (Paninski 2003; Sharpee et al.
2004; Simoncelli et al. 2004; Schwartz et al. 2006). Given
the otherwise tight analogy between STA and STC
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analysis, this difference appears puzzling. For STA
analysis, the requirement of a spherically symmetric
stimulus distribution is best understood in a geometric
picture of why the technique works (Chichilnisky 2001).
The insight and intuition supplied by the geometric
proof thus calls for a similar perspective on STC analy-
sis.

Here, we provide such a geometric derivation for
STC analysis, leading to a simple proof of why the
technique works, that is, of the consistency of the
method. Furthermore, the geometric approach high-
lights the importance of spherical symmetry also for
STC analysis and suggests a simple modification of the
procedure that makes it applicable to stimulus ensem-
bles with general spherical symmetry, not necessarily
Gaussian. We further extend this approach to arbitrary
elliptic stimulus distributions, containing correlations
between different stimulus components. To facilitate
identification of relevant stimulus dimensions for finite
data sets, we then introduce a new statistical test for
significance of relevant stimulus dimensions. Finally,
we compare the obtained prescription with others that
have been used in the literature.

2 Linear-nonlinear models

As for many other analyses of neuronal stimulus–
response relationships, describing sensory stimuli as
vectors in a (potentially high-dimensional) space of
stimuli has provided a useful perspective for spike-
triggered average and spike-triggered covariance analy-
ses. We here denote a stimulus as a column vector s in
an N-dimensional space,

s =

⎛
⎜⎜⎜⎝

s1

s2
...

sN

⎞
⎟⎟⎟⎠ . (1)

The individual components of s can represent, for ex-
ample, the strength of stimulation at different points in
time (Fig. 1(a)), different spatial locations (Fig. 1(b)),
or a combination of the two (Fig. 1(c)). Of course,
space could also be supplemented or substituted by any
other relevant stimulus attribute, for example, spectral
components. Pure temporal binnings (Fig. 1(a)) repre-
sent the simplest scenario, when only the history of an
otherwise one-dimensional stimulus needs to be taken
into account. They are used, for example, when neurons
in the visual system are stimulated with changing ambi-
ent light intensity that contains no spatial structure, or
when an auditory neuron is analyzed for its responses

Space
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Fig. 1 Vectorial representation of stimuli. Different components
represent the value of a stimulus at different time points (a),
different spatial locations (b), or both (c). Spatial binnings (b)
can also be used to represent any other non-temporal aspect of
the stimulus. Spatial and temporal dimensions may be combined
into a unified spatio-temporal representation (c), for example, to
study visual spatio-temporal receptive fields

to the temporal modulation (i.e. the envelope) of a
pure tone. The stimulus vector s is then defined at
discrete times t, and the components of s(t) represent
the stimulus strength within time bins of length �t
during the recent past, for example, by sampling time
discretely,

sn(t) = s(t − (N − n) · �t), for n = 1, . . . , N. (2)

The dimension N of the vectors should be cho-
sen large enough to encompass the relevant stimulus
structure.

The methods of spike-triggered average and spike-
triggered covariance constitute rigorous estimators
of neuronal filtering characteristics when the spike-
generating process is well described by a linear–
nonlinear (LN) model. In such models, the stimulus s
is first filtered by one or several linear filters km. We
denote the number of filters by M. Typically, there
are far fewer filters than stimulus dimensions, M � N.
The filters are, just as the stimuli, represented by N-
dimensional vectors

km =

⎛
⎜⎜⎜⎝

km,1

km,2
...

km,N

⎞
⎟⎟⎟⎠ . (3)

Applying the filter km to a stimulus s yields

kT
m s =

N∑
i=1

km,i · si. (4)

The filtered signals are then transformed into the prob-
ability of generating a spike in response to stimulus
s, P(spike|s), where the variable “spike” here takes
the value 1 for a generated spike or 0 for no spike.
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The transformation occurs through a static nonlinear
function ϕ with M input variables,

P(spike|s) = ϕ
(

kT
1 s, kT

2 s, . . . , kT
Ms

)
. (5)

According to Eq. (5), the stimulus affects the spike
probability only through its projections onto the filters
km. The filters therefore demarcate relevant direc-
tions in stimulus space (Paninski 2003), corresponding
to stimulus features that affect the spike proba-
bility. The subspace spanned by these filters, K =
span(k1, k2, . . . , kM), is called the relevant subspace.
Any stimulus vector that is orthogonal to the relevant
subspace does not affect the spiking probability be-
cause it does not affect the inputs into the function ϕ.
The orthogonal complement of K therefore constitutes
the irrelevant subspace K⊥. The aim of spike-triggered
covariance analysis is to identify the relevant and the
irrelevant stimulus subspaces.

The stimuli s that enter the LN model come from
a prior stimulus distribution P(s), typically determined
by the experimenter when presenting sensory stimuli.
Both STA and STC analysis rely on comparing this
prior stimulus distribution to the distribution of stimuli
that precede spikes, P(s|spike).

Often, the prior stimulus distribution is chosen to be
Gaussian white noise with fixed variance σ 2,

P(s) = 1(
2πσ 2

)N/2
exp

(
− 1

2σ 2
sT s

)
. (6)

The Gaussian white noise distribution has the remark-
able property that, in addition to being spherically sym-
metric, it may be written as a product of distributions,
one for each stimulus component,

P(s) =
N∏

i=1

1√
2πσ 2

exp
(

− si
2

2σ 2

)
. (7)

Thus, each stimulus component is independent of the
others. If the spiking probability only depends on a
few stimulus directions, the stimulus distributions P(s)
and P(s|spike) only differ along these directions. Along
any orthogonal stimulus direction, the two distributions
coincide. The invariance along irrelevant directions
forms the basis of spike-triggered analysis for Gaussian
white noise stimuli: Relevant stimulus directions are
identified as those where the distribution of spike-
generating stimuli differs from the prior distribution.

The Gaussian white stimulus constitutes a special
case of a distribution with spherical symmetry, for
which the prior distribution P(s) depends only on the
absolute value |s| = √

sT s of its argument, that is,

P(s) = P(|s|). (8)

For non-Gaussian stimuli, different stimulus directions
are not independent of one another. As a consequence,
the distributions P(s) and P(s|spike) not only differ
inside the relevant space K, but typically also along
the irrelevant directions in K⊥. In Fig. 2, the prior
stimulus distribution and the spike-triggered stimulus
distribution are shown for 2-dimensional toy examples.
In each case, the spike probability only depends on one
of the two stimulus components, as illustrated by the
nonlinear functions ϕ in Fig. 2(a). The relevant and the
irrelevant direction in stimulus space are defined by

(a)

(b)

(c)

Fig. 2 Two-dimensional examples of a spike-generating process.
(a) Non-linear functions ϕ used to generate spikes in the exam-
ples below. (b) Spherical Gaussian prior stimulus distribution.
(c) Spherical non-Gaussian prior stimulus distribution. In all
cases, the probability to generate spikes only depends on the
relevant direction (horizontal axis). (b1) and (c1) Ensemble of
prior stimulus vectors. (b2) and (c2) Prior (gray dots) and spike-
generating (red dots) stimuli obtained from the nonlinearity in
panel (a1), resulting in a spike-triggered average that is different
from zero. (b3) and (c3) Prior (gray dots) and spike-generating
(red dots) stimuli obtained from the nonlinearity in panel (a2),
resulting in STA = 0. The stimulus distributions along each di-
mension are shown in the side panels. If the distribution is
Gaussian, P(s) = P(s|spike) along the irrelevant direction. For
non-Gaussian stimuli, P(s) �= P(s|spike) along both relevant and
irrelevant directions
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the contour curves of ϕ: Along the relevant direction, ϕ

varies, whereas it always remains constant along the or-
thogonal irrelevant direction. If stimuli are drawn from
a Gaussian distribution, the prior and spike-triggered
distributions are identical along the irrelevant direction
(Fig. 2(b)). When stimuli come from a spherically sym-
metric, non-Gaussian, annular distribution, however,
the two distributions differ also along the irrelevant
direction (Fig. 2(c)). The annular shape of the prior
distribution imposes a constraint, linking the values
of relevant and irrelevant components. A change in
variance along the relevant direction hence induces a
change in variance along the irrelevant direction as
well. Consequently, at first sight, it may seem that STC
analysis would be inapplicable to these cases. Simply
looking for directions in stimulus space along which
the variance of P(s|spike) differs from the variance of
P(s) would lead to the erroneous classification of the
irrelevant direction as relevant. Below we show, how-
ever, that the more realistic case of higher-dimensional
stimuli brings in additional structure not apparent in
this 2-dimensional toy example. The clue lies in the
fact that in all irrelevant directions, the variances of
P(s) and P(s|spike) differ by exactly the same amount.
This constancy typically makes the irrelevant directions
distinguishable from the relevant ones, even in the non-
Gaussian case.

3 Geometric picture of STC analysis for spherically
symmetric stimulus distributions

3.1 Basic definitions

We first consider spike-triggered covariance analysis
for stimuli that have a spherically symmetric prior
distribution, Gaussian or not. Extensions beyond the
spherical case are discussed in Section 4. To simplify
the notation, we assume that the mean value of the
prior stimulus distribution has already been subtracted
from all stimulus vectors, that is, we choose the origin
of the coordinate system so that the prior distribution
of stimuli P(s) has zero mean,
∫

ds P(s) s = 0. (9)

The prior covariance matrix Cp of a spherically sym-
metric stimulus distribution is proportional to the unit
matrix. Here, we set the units in stimulus space such
that Cp coincides with the identity matrix,

Cp =
∫

ds P(s) s sT = IN×N, (10)

where the product s sT is the matrix

s sT =

⎛
⎜⎜⎜⎝

s1s1 s1s2 · · · s1sN

s1s2 s2s2 · · · s2sN
...

...
. . .

...

s1sN s2sN · · · sNsN

⎞
⎟⎟⎟⎠ . (11)

A neuron with a firing probability given by Eq. (5) is
only sensitive to the projection of the actual stimulus s
on the relevant space K. Covariance analysis provides
a systematic procedure to find K, based on the first
two moments of the distribution P(s|spike). The spike-
triggered average 〈s〉 is the first moment of the distrib-
ution of spike-triggered stimuli

〈s〉 =
∫

ds P(s|spike) s

= 1

r

∫
ds P(spike|s) P(s) s, (12)

where r is the total average spike probability per stim-
ulus presentation,

r =
∫

ds P(spike|s) P(s), (13)

and the second equality in Eq. (12) derives from Bayes’
rule. This rearrangement makes the dependence on the
prior stimulus distribution P(s) explicit, which will turn
out useful in the derivations below. Throughout this pa-
per, all averages 〈·〉 are calculated over the distribution
of spike-triggered stimuli, P(s|spike).

When working with experimental data, the distribu-
tion P(s|spike) is not directly available. Therefore, one
typically works with the sample STA ˆ〈s〉, which is the
average of all stimulus segments s(tspike) that precede
the measured spikes at times tspike,

ˆ〈s〉 = 1

Nspikes

∑
tspike

s
(
tspike

)
. (14)

For large enough data sets, the law of large numbers
ensures that the stimulus segments s(tspike) sample the
spike-triggered distribution P(s|spike) thoroughly, so
that ˆ〈s〉 approaches 〈s〉, as defined in Eq. (12).

The covariance of the distribution of spike-triggered
stimuli, P(s|spike), is captured by the spike-triggered
covariance matrix

Cs = 〈
(s − 〈s〉) (s − 〈s〉)T 〉 = 〈

ssT 〉 − 〈s〉〈s〉T

= 1

r

∫
ds P(spike|s) P(s) s sT − 〈s〉〈s〉T . (15)
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This matrix is typically estimated from experimental
data by the sample covariance matrix

Ĉs = 1

Nspikes − 1

×
∑
tspike

(
s
(
tspike

) − ˆ〈s〉
) (

s
(
tspike

) − ˆ〈s〉
)T

. (16)

Again, for large enough data sets, s(tspike) samples
the distribution P(s|spike) thoroughly, so that Ĉs ap-
proaches Cs as defined in Eq. (15).

Standard STC analysis is based on the fact that
when the prior stimuli are drawn from a Gaussian
white distribution and sufficient amounts of data are
available, the diagonalization of Cs yields two types
of eigenvalues. Those corresponding to irrelevant di-
rections are equal to 1, that is, to the variance of the
prior stimulus distribution. The ones corresponding to
relevant directions may have any (non-negative) value,
depending on the variance along each direction.

Limited sampling adds noise to the eigenvalues so
that those corresponding to irrelevant dimensions do
not all lie exactly at unity, but scatter around this level.
Statistical methods can then be used to assess whether
deviations from unity significantly indicate the exis-
tence of a relevant direction (Touryan et al. 2002; Rust
et al. 2005; Schwartz et al. 2006). A relevant stimulus
direction with an eigenvalue that happens to lie very
close to unity, however, may be missed by the method.

Even in the limit of infinite amounts of data, how-
ever, relevant directions could escape detection by the
eigenvalue analysis of the STC matrix. A deviation
from unity is a sufficient, but not a necessary condi-
tion for an eigenvalue to denote a relevant direction
(Paninski 2003; Pillow and Simoncelli 2006); its eigen-
value may happen to lie exactly at unity. This can
occur, for example, when the prior stimulus distribution
is Gaussian and the nonlinearity ϕ is an exponential
function of one of its arguments because exponential
nonlinearities leave the variance along the correspond-
ing relevant direction unchanged. This limitation of
STC analysis reflects the fact that the method is based
entirely on second-order statistics of spike-triggered
stimuli. Typically, a simple remedy is thus to explicitly
include the STA in the identification of the relevant
stimulus space (Rust et al. 2004, 2005; Simoncelli et al.
2004; Schwartz et al. 2006), as relevant directions that
do not show a difference in stimulus variance between
prior and spike-triggered stimulus ensemble can be
expected to show a difference in the stimulus average.

These remarks also apply to STC analysis for non-
Gaussian, spherically symmetric stimulus distributions,
as discussed below. Therefore, the possibility that a rel-

evant stimulus direction might not be revealed through
the spectrum of eigenvalues must be kept in mind.
Having said this, for simplicity we assume in the fol-
lowing that eigenvalues of relevant directions do not
“by chance” coincide with the eigenvalues of irrelevant
directions, as again, this can generally be picked up
by analyzing the STA. In addition, the issue of limited
sampling and significance testing will be put off until
Section 5.

3.2 A geometric derivation

As a basis for applying spike-triggered covariance
analysis to any stimulus distribution with spherical sym-
metry, including non-Gaussian stimuli, we show that
the irrelevant space is spanned by eigenvectors of Cs

with the same degenerate eigenvalue. It then follows
that the relevant space can be identified as the subspace
that is spanned by eigenvectors of Cs whose eigenvalues
deviate from the baseline level of (typically a large
number of) degenerate eigenvalues. In this derivation,
we work directly with the probability distribution of
spike-triggered stimuli and thus do not consider noise
from finite sampling. We thereby provide a proof of
consistency of the method, which means that it yields
the correct relevant subspace in the limit of infinite data
sampling.

The key point of the proof is to show that any vector
of the irrelevant space is an eigenvector of Cs. This
statement is geometrically derived below and immedi-
ately implies that the whole irrelevant subspace K⊥ is
a degenerate eigenspace of Cs, so that all stimulus vec-
tors of the irrelevant space have the same eigenvalue:
Consider two non-parallel vectors v1 and v2 that belong
to the irrelevant space. According to the statement
above, they must be eigenvectors of Cs with eigenvalues
α1 and α2. Their sum lies also within the irrelevant
space and is thus also an eigenvector. Let β be the
eigenvalue of v1 + v2. Now, the identity Cs · (v1 + v2) =
α1v1 + α2v2 = β(v1 + v2) can only be fulfilled for α1 =
α2 = β.

To prove that each (non-zero) vector of the irrele-
vant space is an eigenvector of Cs, we draw out an argu-
ment analogous to the geometric proof of consistency
of STA analysis by Chichilnisky (2001). Specifically, we
want to show that for any v ∈ K⊥

Csv = 1

r

∫
ds P(spike|s) P(s) s sTv − 〈s〉〈s〉Tv

= λv (17)

with a real eigenvalue λ. As a first step, we show that
the spike-triggered average 〈s〉 belongs to K. It follows
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that 〈s〉 is perpendicular to v, so that the 〈s〉〈s〉Tv-term
in Eq. (17) yields zero because 〈s〉Tv = 0.

To this end, we essentially repeat the argument of
Chichilnisky (2001) and thus summarize the derivation
here only briefly: For every stimulus s, a unique coun-
terpart s∗ can be found by taking the mirror image of
s with respect to the relevant subspace K (Fig. 3(a)).
Concretely, with sK denoting the projection of s onto K
and sK⊥ = s − sK denoting the projection of s onto K⊥,
we have

s∗ = s − 2sK⊥ . (18)

(a)

(b)

Fig. 3 Geometry of the vectors involved in the consistency
proof. (a) Each vector s has a mirror image s∗ with respect to the
relevant space K. When integrating Eq. (12), the components sK⊥
and −sK⊥ cancel out, so 〈s〉 ∈ K. (b) v is an arbitrary (normalized)
vector in K⊥; v⊥ is its orthogonal complement. Each vector s has
a mirror image s∗ with respect to v⊥. The projection of s onto the
relevant subspace K is sK and coincides with the projection of s∗
onto K. The difference s − s∗ = 2(vT s)v is proportional to v

The vectors s and s∗ have equal length, so their prob-
abilities within the stimulus ensemble are the same,
P(s) = P(s∗). Since their projections on K are the
same, the associated spike probabilities are also equal,
P(spike|s) = P(spike|s∗). Therefore, in calculating the
spike-triggered average, s and s∗ are weighted equally
in Eq. (12). Given that, by construction, the compo-
nents of s and s∗ orthogonal to K are equal with oppo-
site sign (Fig. 3(a)), these components cancel out in the
STA for all pairs (s, s∗). As a consequence, the spike-
triggered average 〈s〉 has no component orthogonal to
K and thus lies in the relevant subspace.

As the 〈s〉〈s〉Tv-term in Eq. (17) vanishes, we now
have to show the eigenvalue property of v for the
integral term of the equation. To do so, we use a
geometric argument very similar to the one above for
the STA. We consider a vector v from the irrelevant
subspace K⊥ (Fig. 3(b)). Let us denote the hyperplane
that is orthogonal to v by v⊥. Now, for every stimulus
vector s, a unique vector s∗ can be found that is the
mirror image of s with respect to the hyperplane v⊥, see
Fig. 3(b). Assuming that v has unit length, s∗ is simply
obtained as

s∗ = s − 2 (vT s) v. (19)

Again, s and s∗ have equal length so that P(s) = P(s∗).
Also, the projections of s and s∗ on the relevant sub-
space K are identical because s and s∗ have the same
projections on v⊥ and because K is a subspace of v⊥.
Thus, the spike probabilities for these two stimuli are
the same: P(spike|s) = P(spike|s∗). We can therefore
perform the integral in Eq. (17) over s∗ instead of over
s, or alternatively, substitute ssT by (ssT + s∗s∗T)/2.

Applying Cs to the vector v then yields

Cs v = 1

2r

∫
dsP(spike|s)P(s)

(
ssTv + s∗s∗Tv

)
(20)

Investigating the terms ssTv and s∗s∗Tv, we see that
sTv and s∗Tv are equal in magnitude, but with opposite
sign because of the mirror-image properties of s and
s∗, see Fig. 3(b). The sum ssTv + s∗s∗Tv is therefore
proportional to s − s∗ = 2(vT s)v. This vector is parallel
to v; the components orthogonal to v cancel out. Since
this argument holds for every s, Csv is proportional to v,
which is exactly the condition for v being an eigenvector
of Cs, Csv = λv.

We conclude that for a spherically symmetric stimu-
lus distribution, an eigenvalue analysis of Cs yields a set
of degenerate eigenvalues whose eigenvectors span the
irrelevant space. For non-Gaussian stimuli, the numer-
ical value of this eigenvalue baseline generally cannot
be predicted and depends on the details of the non-
linearity ϕ within the LN model (Paninski 2003). For
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Gaussian stimuli, on the other hand, the baseline level
of irrelevant eigenvalues is always equal to the prior
variance (here fixed at 1) because individual stimulus
components are independent and are thus not affected
by changes of variance in other directions (Paninski
2003).

As a consequence, STC analysis can be applied to the
general case of spherically symmetric stimulus distri-
butions, not necessarily Gaussian. The relevant space,
however, must now be identified as the one spanned
by the eigenvectors whose eigenvalues depart from
the baseline level of irrelevant eigenvalues. Note that
in practical applications, the degeneracy of irrelevant
eigenvalues is broken up by finite sampling effects
and the eigenvalues scatter around the baseline. As
explained in Section 5, statistical methods can be used
to test whether the scatter is consistent with pure finite
sampling effects of otherwise degenerate eigenvalues.

An alternative derivation of the main result of this
subsection is provided by group theory. The argument
is based in the fact that the firing probability P(spike|s)
remains invariant under any coordinate transforma-
tion operating only on the irrelevant subspace K⊥ and
leaving the relevant subspace K unchanged. There are
many such transformations, since the irrelevant sub-
space K⊥ is usually high-dimensional. All these coordi-
nate transformations are called symmetries of the firing
probability. The symmetries of the firing probability are
also symmetries of the covariance matrix. As shown by
many examples in quantum mechanics and solid state
theory, the symmetry of a linear operator determines
the degeneracy of its eigenvalues. Based on these ideas,
in Appendix A, we rederive the main result of this
subsection, using only symmetry arguments.

3.3 Disambiguation of relevant and irrelevant spaces

Relevant directions are associated with eigenvalues
that pop out as outliers of the baseline degenerate
spectrum. Therefore, they can be easily identified only
when the irrelevant space is high-dimensional, so that
the spectrum reveals a highly degenerate eigenspace.
Fortunately, in most practical cases the dimensionality
of the relevant stimulus space is considerably smaller
than the dimensionality of the complete stimulus space.
We thus generally search for a small number of relevant
stimulus directions immersed in a much larger stimulus
space.

When working with small-dimensional stimulus
spaces, however, it may not be apparent from the eigen-
value spectrum alone which eigenvectors belong to the
relevant and which to the irrelevant space. In the sce-
nario of Fig. 2(c2), for example, the stimulus space has

only two dimensions, and STC analysis therefore just
gives two (different) eigenvalues. The question then
arises of how to test whether one of these directions—
or more generally whether a given subspace with de-
generate eigenvalue—actually corresponds to the irrel-
evant space.

As an example, imagine that the spectrum of eigen-
values reveals two (small-dimensional) degenerate sub-
spaces, and we wish to determine which is relevant
and which (if any) is irrelevant. As a first attempt,
one could investigate the nonlinearity along one stim-
ulus direction belonging to the hypothesized irrelevant
space. The nonlinearity can be obtained by evaluating
the probability that stimuli having a given projection
value along the selected direction produce a spike,
irrespective of its projection on the relevant space.
One may call such test an evaluation of the “mar-
ginal nonlinearity”. In practical applications, probabili-
ties are estimated from histograms (Chichilnisky 2001).
When using Gaussian stimulus distributions, the mar-
ginal nonlinearity is (approximately) flat if the selected
direction indeed belongs to the irrelevant space. For
non-Gaussian prior distributions, however, the depen-
dencies between different stimulus directions can cause
a non-constant marginal nonlinearity even along irrel-
evant dimensions, and this method may thus not be
conclusive.

As an alternative, we suggest to evaluate the “con-
ditional nonlinearity”, obtained in the following way:
For each direction of the hypothesized relevant space,
choose a fixed target value (for example, zero) to
condition the nonlinearity. Then compute the nonlin-
earity along a direction of the hypothesized irrelevant
space by using only those stimuli whose corresponding
projections on the putative relevant directions lie in a
small window around the target values. The conditional
nonlinearity is largely unaffected by the dependence
between relevant and irrelevant stimulus directions; it
should therefore be nearly flat if indeed the hypothesis
about the irrelevant space was correct. The method
works well as long as the putative relevant subspace
is low dimensional and sufficient data are available.
A disadvantage is that the amount of required data
increases exponentially with the dimensionality of the
relevant subspace.

Note that one can construct special scenarios where
even the conditional nonlinearity does not disam-
biguate which subspace is relevant and which is irrel-
evant. One example is shown in Fig. 2(c3) where the
two dimensions x and y are connected through the
stimulus distribution by x2 + y2 = 1 and the spike prob-
ability is a function of x2. Under the constraint of this
particular stimulus distribution, this model cannot be
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distinguished from an equivalent model description
where y is considered a relevant direction, with the
spike probability a function of y2 = 1 − x2. More gen-
erally, the disambiguation based on conditional non-
linearities fails whenever the prior stimuli are sampled
from the surface of a high-dimensional sphere (intro-
ducing a constraint that lets the square of one compo-
nent be expressed in terms of the other components)
and the spiking probability depends on a quadratic
form of some or all of the relevant stimulus compo-
nents. Identification of the actual relevant directions,
defined by the nonlinearity (Fig. 2(a2)) independently
of the applied stimulus distribution, then has to rely on
other sources of information, for example, prior expec-
tations about which stimulus components should be rel-
evant (typically the expectation that the relevant sub-
space is small-dimensional) or additional experiments
performed with a different stimulus distribution. It is
interesting to note that STA analysis, naturally, suffers
from the same ambiguity in the considered scenarios.
When the nonlinearity depends on a quadratic form of
the inputs, for example, when it is an even function, the
STA must be identical to zero.

3.4 Covariance analysis with or without subtracting
the STA

Coming back to the geometrical derivation, note that
the 〈s〉〈s〉T -term in Eq. (17) played essentially no role
in the proof. We had shown that applying this term to
any irrelevant direction v just yields zero; the derivation
that v is an eigenvector of the STC matrix is thus
valid also if this term is left out when calculating the
STC matrix. It follows that the STC method works
independently of whether the STA is subtracted from
the spike-triggered ensemble or not, for example when
computing the sample covariance matrix, Eq. (16); in
both cases, all irrelevant directions yield degenerate
eigenvalues (see also the first example below).

Furthermore, it also follows that the method works
if the STA is projected out of the stimulus ensemble, so
that only dimensions orthogonal to the STA are taken
into account (Rust et al. 2004, 2005; Simoncelli et al.
2004; Schwartz et al. 2006). As the STA is part of the
relevant subspace K, projecting it out simply reduces
the dimensionality of the relevant subspace by one and
does not affect the irrelevant subspace. The complete
relevant subspace may be reconstructed by combining
the STA with the relevant directions obtained from the
reduced STC analysis. This approach can be useful to
avoid the scenario where a relevant direction might not
be detected by STC analysis alone because it happens
to have the same eigenvalue as the irrelevant directions.

3.5 Examples

In this section, two examples are presented. The first
one compares the results of covariance analysis with
and without subtracting the STA in the spike-triggered
covariance matrix, Eq. (16). The second one discusses
the difference between Gaussian and non-Gaussian
stimuli.

STC with and without subtracting the STA Covariance
analysis can be equally performed with and without
subtracting the STA in the calculation of the spike-
triggered covariance matrix, as shown in Fig. 4.

In this example, there are two relevant directions, k1

and k2 (panel (b1)). The spiking probability (Fig. 4(a))
is highest for stimuli whose projection on k1 is large
and whose projection on k2 is large in absolute value, as
reflected by the distribution of spike-generating stimuli
(panel (b2)). The STA is proportional to k1. Figure 4(c)
shows the eigenvalues and eigenvectors obtained when
diagonalizing the covariance matrix Cs with the STA
subtracted. The largest eigenvalue (panel (c1)) repre-
sents the direction where the spike-generating stimuli
have maximal variance, in this case, k2. The smallest
eigenvalue corresponds to the direction with minimal
variance: k1. The two relevant directions, k1 and k2, are
accurately captured by the relevant eigenvectors e1 and
e2, as shown in Fig. 4(c2).

In Fig. 4(d), we illustrate the diagonalization of the
spike-triggered covariance matrix without subtracting
the STA. The eigenvalues now represent the mean
square projection of spike-generating stimuli along
each direction. Two eigenvalues lie above the baseline
level (panel (d1)). Although the eigenvalues are nu-
merically different from those obtained in panel (c1),
the eigenvectors coincide (compare panel (d2) with
(c2)). The relevant filters, hence, can be obtained by
diagonalizing Cs either with or without subtracting the
STA.

Comparing Gaussian and non-Gaussian stimuli In the
example of Fig. 5, the difference between Gaussian
and non-Gaussian prior stimuli is exemplified. Both ap-
plied stimulus distributions are spherically symmetric,
and the eigenvalues of their prior covariance matrices
are all equal to 1 (panel (a1)). The relevant space is
spanned by the filters k1 and k2, and these two vectors
differ in their shape (panel (a2)) and frequency content
(panel (a3)). The firing probability (panel (a4)) has
rotational symmetry in the relevant space. When the
stimulus is Gaussian (Fig. 5(b)), all irrelevant eigenval-
ues cluster around unity (panel (b2)). In contrast, for
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non-Gaussian stimuli, irrelevant eigenvalues may clus-
ter around some other value, here around a baseline of
0.8 (panel (c2)).

� Fig. 4 Covariance analysis can be carried out with (c) or
without (d) subtracting the STA. (a) Spike probability in
the relevant space: P(spike|s) = {1 − exp[−(kT

2 s)2/0.05]}/{1 +
exp[−(kT

1 s − 0.5)/0.05]}. (b1) Relevant filters k1 and k2.
(b2) Prior (gray) and spike-generating (red) stimuli in the sub-
space spanned by k1 and k2. The stimulus was Gaussian white
noise with unit variance. (c1) and (d1) Eigenvalues of Cs. The
black line indicates the value 1. (c2) and (d2) Comparison be-
tween the relevant filters k1 and k2 and the eigenvectors e1 and
e2 corresponding to the eigenvalues of matching color in (c1) and
(d1). Number of analyzed spikes in each example: 5000

The fact that the baseline is below unity is actually
a consequence of the shape of the prior stimulus dis-
tribution, which here has the form of a 20-dimensional
spherical shell, and of the increased variance of the
spike-triggered stimuli along the relevant stimulus com-
ponents. Spikes only occur when the absolute value of
the components along the relevant directions are large.
Since the norm of each s is fixed, vectors with large
relevant components necessarily have small irrelevant
components. The degenerate eigenvalues at 0.8 < 1
reflect the reduced variance along irrelevant directions.
However, if the nonlinearity of the model ϕ were
changed so that spikes were only triggered by stimuli
having small components along the relevant directions,
the fixed stimulus norm would force these stimuli to
have large irrelevant components. The baseline of the
irrelevant eigenvalues would then be above unity. This
argument holds for a shell-like prior distribution; for
a different stimulus, say one where the radial compo-
nent of the prior distribution is sharply peaked at the
origin, the relationship between the variance along the
relevant directions and the baseline of the irrelevant
eigenvalues may be inverted: Increased variance along
relevant directions corresponds to a baseline above
unity; decreased variance, to a baseline below unity.

In both scenarios of Fig. 5, the two relevant stim-
ulus directions are identified by the two outliers of
the spectrum (panels (b2) and (c2)). Note that the
obtained relevant eigenvectors and the original filters
of the model do not match in a one-by-one fashion.
The two pairs of vectors, however, span the same space,
since each filter km coincides with its projection k′

m
on the space generated by e1 and e2 (panels (b4) and
(c4)). The identification of the relevant space rather
than of the individual model filters is, in fact, all that
one can expect from STC analysis; in the expression of
the firing probability, Eq. (5), the individual filters km

are not uniquely defined and could be exchanged for
others that span the same relevant space, provided that
the nonlinearity ϕ be appropriately adjusted. Thus, the
expression of the firing probability used in Fig. 5 could
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Fig. 5 Covariance analysis
using Gaussian (b) and
spherical non-Gaussian (c)
stimulus distributions.
(a1) Prior eigenvalues. (a2)
and (a3) Filters governing the
firing probability in the time
and frequency domains.
(a4) Spike probability in the
relevant space: P(spike|s) =
(1 − exp{−[(kT

1 s/2.2)2 +
(kT

2 s/2.2)2]})4. (b) Gaussian
prior stimulus. (b1) Prior
(gray) and spike-generating
(red) stimuli. (b2)
Eigenvalues of Cs. The black
line indicates the value 1.
(b3) Eigenvectors e1 and e2
corresponding to the
eigenvalues of matching
colors in b2 and comparison
with the filters k1 and k2.
(b4) Comparison between the
filters k1 and k2 and their
projections k′

1 and k′
2 on the

space generated by e1 and e2.
(c) Same as above, for
non-Gaussian prior stimuli.
The stimuli belong to the
surface of a 20-dimensional
sphere with unit variance
along each component.
Number of analyzed spikes in
each example: 5000
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have been formulated in a mathematically equivalent
way, using a different pair of filters that span the same
subspace.

In the present example, the identification of the
subspace, but not the individual filters is particularly
obvious because the firing probability has rotational
symmetry in the two-dimensional relevant subspace.
As discussed also in Appendix A, this symmetry leads
to degenerate eigenvalues for the two relevant direc-
tions, as shown in panels (b2) and (c2). Therefore, the
whole space generated by their linear combinations is
an eigenspace of the covariance matrix.

4 Extension to elliptic stimulus distributions

In this section, we generalize the previous results to
the case of elliptic prior stimulus distributions. Elliptic

distributions represent a special case of non-white stim-
ulus distributions. Individual stimulus components are
now correlated, and the prior covariance matrix Cp is
no longer the unit matrix.

One way of dealing with an elliptic prior stimulus dis-
tribution when, in addition, the distribution is Gaussian
has been pointed out by Bialek and de Ruyter van
Steveninck (2005). When the eigenvalue analysis is car-
ried out on the matrix �C = Cs − Cp, relevant direc-
tions are marked by eigenvalues that deviate from the
baseline of zero and are obtained from the correspond-
ing eigenvectors after premultiplication with C−1

p . The
correction with C−1

p undoes the correlations that are
induced by the prior stimulus distribution. However,
this method requires a Gaussian distribution of stim-
uli. In the following, we aim at deriving an analogous
procedure only relying on the elliptic symmetry of the
prior stimulus distribution.
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An elliptic stimulus distribution is one that can be
made spherical by linearly rescaling the components of
the stimulus along appropriately chosen N orthogonal
axes. The procedure is the same as the one needed
to transform an ellipsoid into a sphere: Each of the
principal axes of the ellipsoid is divided by its length.
Obtaining an extension of STC analysis is then straight-
forward: Transform stimuli so that they assume a spher-
ical distribution, apply STC analysis to the transformed
stimulus distribution, and then transform back the ob-
tained relevant and irrelevant directions to the original
stimulus space. We now go through this procedure step
by step in order to arrive at a condensed prescription.

4.1 Transforming to a spherical distribution

We first need to identify the principal axes of the prior
stimulus distribution P(s). These are the eigenvectors
of the prior covariance matrix Cp. Because Cp is,
like all covariance matrices, symmetric and positive-
semidefinite, Cp can be transformed by an orthogonal
transformation O into a diagonal matrix D with real-
valued, non-negative diagonal elements,

OT Cp O = D. (21)

Let us assume for the moment that all diagonal ele-
ments of D are larger than zero so that D has full rank.
We can then calculate D1/2 by taking the square root of
each diagonal element of D and D−1/2 by in addition
taking the inverse.

The prior distribution P(s) is called elliptic if it can
be transformed into a spherical distribution by defining
new rescaled coordinates

s′ = D−1/2 OT s. (22)

This transformation maps the original space of vectors
s to the symmetric space of vectors s′. The matrices
required to perform covariance analysis can also be
transformed to the symmetric space. The transformed
stimuli have a prior covariance matrix that is equal to
the identity matrix

C′
p =

∫
ds′ P(s′) s′s′T = I. (23)

The spike-triggered covariance matrix in the trans-
formed stimulus space C′

s can simply be obtained by
calculating the spike-triggered covariance matrix in the
original space and then transforming appropriately,

C′
s = D−1/2 OT Cs O D−1/2. (24)

Equation (24) follows from the fact that

s′ s′T = D−1/2 OT s sT O D−1/2. (25)

In the symmetric space, the stimulus distribution is
spherical, so the results of Section 3 are applicable. The
irrelevant directions can be obtained as the eigenvec-
tors of C′

s whose eigenvalues constitute the baseline
degenerate spectrum. The relevant space is the orthog-
onal complement of the irrelevant space.

We now return the relevant and irrelevant direc-
tions back to the original space. In order to obtain the
transformation rules for the relevant directions, care
has to be taken to preserve the scalar products. The
conditional firing probability given by Eq. (5) must
remain unchanged when transforming from s′ to s.
We therefore require ϕ(s′) = ϕ(s). This condition is
fulfilled if relevant directions in the transformed space,
w′, are connected to relevant directions of the original
space, w, through the condition

w′T s′ = wT s (26)

for all original stimuli s and their transformed versions
s′. The transformation properties of the relevant di-
rections w are then defined in terms of their scalar
products to stimulus vectors. In mathematical terms,
this means that the relevant directions w do not trans-
form as the original vectors s, but as dual vectors (in
physics, the terminology of covariant and contravariant
vectors is also used). Hence, the transformation rule for
relevant directions is

w′ = D1/2 OT w, (27)

and the backward transformation is

w = O D−1/2 w′. (28)

Note that Eq. (27) is not equivalent to Eq. (22). Also
note that the obtained w are not necessarily orthogonal
to each other, in contrast to the eigenvectors that are
obtained for spherically symmetric stimulus distribu-
tions. However, the set of relevant directions is still lin-
early independent and thus spans a relevant subspace
of the same dimensionality as the relevant directions w′
in the symmetric space.

For completeness, we also provide the transforma-
tion properties of irrelevant directions. In the sym-
metric space, irrelevant directions are orthogonal to
relevant ones, since relevant and irrelevant directions
are eigenvectors of a symmetric matrix. In the original
space, irrelevant directions must still be orthogonal to
relevant directions: this orthogonality is what defines
them, because it ensures that they do not contribute to
any of the scalar products kT

ms in Eq. (5). Orthogonality
is guaranteed if irrelevant directions are transformed
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with the same prescription as the stimulus vectors.
Thus, if v is an irrelevant vector, then

v′ = D−1/2 OT v, (29)

and backward,

v = O D1/2 v′. (30)

Note that Eq. (29) is equivalent to the transformation of
stimulus vectors, Eq. (22), but not to the transformation
of relevant stimulus directions, Eq. (27).

We now summarize the procedure of STC analysis
for elliptic stimulus distributions:

1. Calculate the spike-triggered covariance matrix Cs

with the original stimuli.
2. Obtain the transformed STC matrix C′

s using
Eq. (24).

3. Obtain the transformed relevant directions w′ and
irrelevant directions v′ from an eigenvalue analysis
of C′

s.
4. Obtain the original relevant directions w and ir-

relevant directions v by transforming back with
Eqs. (28) and (30), respectively.

In passing, we mention that when the spike probability
ϕ contains a single relevant direction k1, the transfor-
mation to the symmetric space is also applicable to the
calculation of the STA. As shown in Appendix B, this
procedure leads to the well-known recipe of estimating
the single relevant direction by premultiplying the STA
by the inverse of the prior covariance matrix: k1 ∝
C−1

p 〈s〉 (Theunissen et al. 2001; Paninski 2003; Schwartz
et al. 2006).

4.2 STC analysis directly in the original stimulus space

For convenience, we now reformulate the whole pro-
cedure using only quantities defined in the original
space. Operationally, this can spare us from the need to
transform forth and back to the symmetric space. We
first note that the two matrices C−1

p Cs and CsC−1
p both

have the same eigenvalue spectrum as C′
s. In technical

terms, they are both similar matrices to C′
s: If P is

the change-of-base matrix needed to transform relevant
directions to the symmetric space (P = D1/2 OT , as
stated in Eq. (27)), then, following Eq. (24), C−1

p Cs and
C′

s are related by a similarity transformation: C−1
p Cs =

P−1C′
s P. Similar matrices share the same eigenvalues

and have related eigenvectors: If in the symmetric space
w′ is a relevant eigenvector of C′

s with eigenvalue λ,
then in the original space, w = P−1w′ = OD−1/2w′, as
in Eq. (28), is an eigenvector of C−1

p Cs with eigenvalue

λ. Thus, relevant directions w can be identified from an
eigenvalue analysis of C−1

p Cs.
In the same way, if Q transforms irrelevant direc-

tions (that is, Q = D−1/2 OT , as stated in Eq. (29)),
then CsC−1

p = Q−1C′
s Q, which means that CsC−1

p and
C′

s share the same eigenvalues and have related eigen-
vectors. Thus, all irrelevant directions are eigenvectors
of CsC−1

p with degenerate eigenvalues. Note that C−1
p Cs

and CsC−1
p are generally not symmetric, and thus the

eigenvectors of C−1
p Cs and of CsC−1

p , respectively, do
not form orthogonal sets. Yet, each set of eigenvectors
still provides a basis for the stimulus space because the
eigenvectors of C′

s provide a basis and the transforma-
tions P and Q both have full rank.

Furthermore, relevant and irrelevant directions re-
main orthogonal to each other. To see this, note that
the two matrices C−1

p Cs and CsC−1
p are adjoint matri-

ces, since they are real-valued and (C−1
p Cs)

T = CsC−1
p .

Adjoint matrices have the same set of eigenvalues, and
moreover, their eigenvectors form dual bases. Thus, if
w is an eigenvector of C−1

p Cs with eigenvalue λ and v

is an eigenvector of CsC−1
p with eigenvalue μ �= λ, then

v ⊥ w. Therefore, relevant directions are confirmed to
be perpendicular to irrelevant directions.

In summary, the problem of identifying relevant and
irrelevant directions for general elliptic stimulus distri-
butions may be entirely solved in the original space.
Relevant directions are obtained as eigenvectors of
C−1

p Cs corresponding to eigenvalues that differ from
the degenerate baseline level. Irrelevant directions can
be obtained from the orthogonal complement or as
the eigenvectors of CsC−1

P corresponding to eigenval-
ues of the degenerate baseline level. The fact that we
need two different matrices, C−1

p Cs and CsC−1
p , reflects

the different transformation properties of relevant and
irrelevant directions. Using the matrices C−1

p Cs and
CsC−1

P serves as an alternative to the eigenvalue analy-
sis of the transformed STC matrix C′

s, Eq. (24), and
then transforming the obtained eigenvectors according
to Eqs. (28) and (30). In fact, these two methods yield
identical eigenvalue spectra and (transformed) eigen-
vectors. Note that all derivations above still work if Cs

is calculated without subtracting the STA.

4.3 Regularization

So far, we have assumed that the prior covariance
matrix Cp has full rank so that it can be inverted.
However, if D has one or more vanishing diagonal
elements, Eq. (22) is ill-defined. This happens when
one or more stimulus directions have zero variance,
so the prior stimuli do not cover all dimensions of the
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stimulus space. A typical example is given by low-pass
filtered stimuli sampled at high frequency. If the prior
stimulus lacks one or more dimensions, there is no way
to extract information about the firing probability in
the missing dimensions. The best we can do is estimate
the filters without these dimensions. There are two
ways to proceed. One is to simply eliminate the missing
dimensions, that is, to work with a rectangular D matrix
(more rows than columns). The transformation matrix
P is therefore also rectangular, and the symmetric space
has a lower dimensionality than the original space.
The analysis can be carried out as before, only that
when returning back to the original space, the number
of relevant plus irrelevant directions is smaller than
the dimensionality of the original space. The other
alternative is to employ the full D matrix, but when
inverting it, to set the infinite-valued diagonal elements
of D−1 equal to zero. The matrix C−1

p = OD−1 OT is
then defined as the pseudoinverse of Cp.

This regularization procedure is also advised when
some of the eigenvalues of Cp are not necessarily zero,
but much smaller than others. The corresponding di-
mensions are not well represented in the prior stimu-
lus distribution and should thus be eliminated in the
analysis to avoid noise amplification when inverting
Cp. Noise comes from limited sampling. Setting the
diagonal elements of D−1 to zero when, for example,
the corresponding diagonal elements of D are smaller
than a certain fraction of the maximal eigenvalue (say
5 %) is a simple, yet effective way to regularize the prior
stimulus distribution (Touryan et al. 2005; Felsen et al.
2005).

4.4 Examples of covariance analysis with elliptic
stimulus distributions

Here we present two examples where the prior stimulus
distribution is elliptic. The first one is a Gaussian stim-
ulus, for which different dimensions are independent
from one another. The second one is a hollow-ellipsoid-
like stimulus distribution, where components are cou-
pled. In both cases, we employ the same nonlinearity
and relevant filters as in Fig. 5. Our aim is to compare
the results obtained by diagonalizing C−1

p Cs with those
of �C = Cs − Cp. As expected, the two methods are
equivalent when the stimulus is Gaussian, but produce
different results when applied to non-Gaussian elliptic
stimulus distributions.

Example with a Gaussian elliptic stimulus distribution
Figure 6 shows the diagonalization of C−1

p Cs and �C
when the stimulus distribution is elliptic and Gaussian.
An elliptic prior stimulus distribution gives rise to

a non-uniform spectrum of prior eigenvalues (panel
(a1)). We choose an example where the filters k1 and
k2 have different temporal (panel (a2)) and frequency
(panel (a3)) characteristics. Specifically, k1 has more
power at lower frequencies compared to k2. Since the
prior stimulus has an exponentially decaying spectrum,
its variance in the direction k1 is larger than in the
direction k2. Thus, the prior stimuli (gray dots) occupy
an elongated region in stimulus space (panel (a4)).
The firing probability is spherically symmetric in the
subspace spanned by k1 and k2. Hence, the ratio of the
density of red and gray dots in panel (a4) has circular
contour lines. The transformation to the symmetric
space contracts the elongated directions, resulting in
a spherical prior distribution. As a consequence, the
firing probability no longer looks spherically symmet-
ric in the space spanned by k′

1 and k′
2. Due to this

anisotropy, the degeneracy of the two relevant eigen-
values of C−1

p Cs is broken (panel (b1)).
In Fig. 6(b1), the total number of eigenvalues (9) is

smaller than the dimensionality of the stimulus space
(20). In this example, the prior stimulus has a small
variance in 11 stimulus dimensions. To avoid noise
amplification, the 11 sub-represented dimensions were
eliminated before starting the analysis. The alternative
strategy would have been to work with the pseudoin-
verse C−1

p . In that case, the spectrum of C−1
p Cs would

still have shown 20 eigenvalues, but 11 of them would
have corresponded to the regularized directions and
would therefore have been equal to zero.

When diagonalizing C−1
p Cs, two eigenvalues deviate

noticeably from unity (panel (b1)). For comparison,
the eigenvalue spectrum of Cs itself is shown as an
inset of panel (b1). This spectrum is similar to the
one of Cp, reflecting the fact that the spike-triggered
stimulus distribution is strongly affected by the shape
of the prior distribution. The eigenvectors e1 and e2

for the distinct eigenvalues of C−1
p Cs correspond to the

elongated direction in panel (a4) (largest eigenvalue)
and the perpendicular direction (second largest eigen-
value), respectively. The eigenvectors e1 and e2 are
linear combinations of the filters k1 and k2, but they
do not coincide with them (panel (b2)). The filters k1

and k2, however, coincide with their projections k′
1 and

k′
2 on the space spanned by e1 and e2 (panel (b3)). This

means that k1 and k2 span the same relevant space as
e1 and e2.

In Fig. 6(c), the results of diagonalizing �C are dis-
played. Two eigenvalues are clearly above zero (panel
(c1)). The associated eigenvectors e1 and e2 have a
large fraction of their power in the low-frequency
range, contaminated by the most represented direc-
tion in the prior stimulus. Consequently, they do not



J Comput Neurosci (2013) 34:137–161 151

(a)

(b)

(c)

Fig. 6 Covariance analysis with elliptic Gaussian stimulus dis-
tributions. (a1) Spectrum of prior eigenvalues. The prior stim-
ulus was constructed in Fourier space. The real and imaginary
components of each frequency ν were drawn from a Gaussian
distribution of zero mean and standard deviation std(ν) ∝
exp

{
−ν2/[2 · (0.075 bins−1)2]

}
+ 0.1 and then transformed back

to the time domain and normalized to unit variance. (a2) and
(a3) Relevant filters, displayed in the time and frequency do-
mains. (a4) Prior (gray) and spike-generating (red) stimuli. The
firing probability for this example was the same as the one used
in Fig. 5. (b1) Spectrum of eigenvalues of C−1

p Cs. Stimulus dimen-
sions whose variance was less than 1.5 % of the maximal variance
were projected out before the analysis. The black line indicates

the value 1. For comparison, the inset shows the eigenvalues of
Cs. (b2) Comparison of the filters k1 and k2 to the eigenvectors
e1 and e2 corresponding to the eigenvalues of matching colors in
(b1). (b3) Comparison of the filters k1 and k2 to their projections
k′

1 and k′
2 on the space generated by e1 and e2. (c1) Spectrum

of eigenvalues of �C. The black line indicates the value 0. In
the insets, the raw eigenvectors e1 and e2 are shown (black
lines), together with their corrected versions e′

1 and e′
2 (colored

lines). (c2) Comparison of the filters k1 and k2 to the corrected
eigenvectors e′

1 and e′
2. (c3) Comparison of the filters k1 and k2

to their projections k′
1 and k′

2 on the space generated by e′
1 and

e′
2. Number of analyzed spikes in each example: 5000
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generate the same subspace as the filters k1 and k2. In
order to correct for the ellipticity of the prior stimulus
distribution, the eigenvectors must be premultiplied by
C−1

p (Bialek and de Ruyter van Steveninck 2005), thus
defining the corrected relevant eigenvectors e′

1 and e′
2.

A comparison between the original eigenvectors e1 and
e2 and their corrected versions e′

1 and e′
2 is shown in the

insets of panel (c1). The correction procedure dimin-
ishes the low-frequency content of the filters. Although
the corrected eigenvectors do not coincide with the in-
dividual filters k1 and k2 (see panel (c2)), they generate
the same subspace, as evidenced by the excellent match
between the filters ki and their projections k′

i on the
space generated by e′

1 and e′
2.

Fig. 7 Covariance analysis
with elliptic non-Gaussian
stimulus distributions.
(a1) Spectrum of prior
eigenvalues. (a2) and
(a3) Relevant filters, in the
time (a2) and frequency (a3)
domains. (a4) Prior (gray)
and spike-generating (red)
stimuli. The firing probability
for this example was the same
as the one used in Fig. 5.
(b1) Spectrum of eigenvalues
of C−1

p Cs. The black line
indicates the value 1.
(b2) Comparison of the filters
k1 and k2 to the eigenvectors
e1 and e2 corresponding to
the eigenvalues of matching
colors in (b1).
(b3) Comparison of the filters
k1 and k2 to their projections
k′

1 and k′
2 on the space

generated by e1 and e2.
(c1) Spectrum of eigenvalues
of �C. The black line
indicates the value 0.
(c2) Corrected eigenvectors
corresponding to the
eigenvalues of matching color
in (c1). (c3) Comparison of
the filters k1 and k2 to their
projections k′

1 and k′
2 on the

space generated by e′
1, e′

2, e′
19,

and e′
20. Number of analyzed

spikes in each example: 5000

(a)

(b)

(c)
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Example with a non-Gaussian elliptic stimulus distrib-
ution In Fig. 7, covariance analysis is performed on
stimuli consisting of a collection of vectors lying on the
surface of a 20-dimensional ellipsoid. Each vector is
initially constructed from a spherical Gaussian distrib-
ution and then normalized to have unit length. Then,
one Fourier component is multiplied by a factor of 4.
Thus, the final prior stimuli lie on the surface of a
20-dimensional ellipsoid, with a variance of 16 in two
Fourier components (two components, corresponding
to sine and cosine phases at this frequency) and unit
variance in the remaining directions (panel (a1)).

The two relevant filters (panels (a2) and (a3)) and
the spiking probability are identical to those used in
previous examples (Figs. 5 and 6). In the present case,
however, the prior stimulus has approximately constant
variance throughout the frequency range covered by
the two filters (panel (a3)). Thus, the relevant space is
almost fully included in the subspace spanned by the
short directions of the prior stimulus and is perpendic-
ular to the two elongated directions. Consequently, the
prior stimulus has approximately the same variance in
the directions of the two relevant filters, as seen by
the circular symmetry of the gray dots in panel (a4).
Thus, when transforming to the symmetric space, the
two relevant directions are scaled by the same factor.
The spectrum of C−1

p Cs, hence, shows two roughly
degenerate eigenvalues (panel (b1)). The associated
eigenvectors e1 and e2 do not necessarily coincide with
the filters k1 and k2 (panel (b2)). However, k1 and
k2 perfectly coincide with their projections k′

1 and k′
2

on the space spanned by e1 and e2, verifying that the
eigenvectors of C−1

p Cs span the same space as the filters.
The eigenvalue spectrum of �C has four clear out-

liers (panel (c1)). In this example, the two largest eigen-
values correspond to eigenvectors that, when corrected
with C−1

p , span the space generated by the filters k1

and k2. The smallest two eigenvalues, however, are
spurious.

If a stimulus is Gaussian, different components are
independent from one another. Hence, the distribution
of spike-triggered stimuli along irrelevant directions
coincides with the prior distribution. In this context, it
makes sense to compensate for the stimulus ellipticity
by subtracting Cp from Cs: The variance of �C vanishes
along irrelevant directions. For non-Gaussian stimuli as
the one of Fig. 7, however, different components are
not independent from one another. Hence, the vari-
ance of the spike-triggered stimuli does not coincide
with the prior variance along irrelevant directions. The
subtraction Cs − Cp is therefore not able to counteract
the elliptic nature of the stimulus distribution, and now
�C may have non-vanishing variance along irrelevant

directions. Since the magnitude of the residual vari-
ance depends on the magnitude of the prior variance,
the degeneracy of the irrelevant directions is broken.
In the example of Fig. 7, we chose a prior stimulus
whose spectrum is rather peculiar, and therefore, the
loss of degeneracy of the irrelevant directions is very
pronounced. More typically, the spectrum of the prior
stimulus may decay in a fairly continuous way. The
eigenvalues of �C associated with irrelevant directions,
hence, also decay continuously. Whether they appear
as clear outliers, or just as a weirdly shaped spectrum,
depends on the exact numerical value of the prior
spectrum, on the nonlinearity ϕ, and on the amount of
collected data. In any case, they are not degenerate.

5 Significance testing

The identification of the relevant stimulus space is
based on recognizing degenerate eigenvalues. Due to
finite sampling, however, the spectrum of eigenvalues
for irrelevant directions is never perfectly degenerate,
but rather shows some scatter around the value that
would be expected in the limit of infinite amounts of
data. The question then arises whether the scatter ob-
served in a given spectrum represents true differences
in variance along relevant directions or instead results
from statistical fluctuations along irrelevant directions.
Figure 8 displays the spectra of the same model as
in Fig. 5(c), but now varying the number of spikes
included in the analysis. In panel (a1), only 23 spikes are
employed, and there, it is not possible to determine by
naked eye which eigenvalues belong to the degenerate
baseline level and which are the outliers. In panel (a3),
on the other hand, with 5,000 spikes, the task appears
trivial. To see how statistical fluctuations in the spec-
trum depend on the amount of available data, a useful
visualization is to plot the evolution of the spectrum
with increasing number of analyzed spikes (Agüera y
Arcas and Fairhall 2003; Agüera y Arcas et al. 2003),
as done in panel (a2). The eigenvalues correspond-
ing to the irrelevant subspace converge progressively,
whereas the ones associated with relevant directions
branch off and settle at a distinct level. For a more
systematic analysis of whether individual eigenvalues
indicate relevant directions or not, we need a statistical
test for the significance of deviations from degeneracy.

In the case of a Gaussian prior stimulus distribution,
such a test is typically performed by randomly shift-
ing the spike times and thereby generating artificial
spike trains that, by construction, contain no rele-
vant directions (Touryan et al. 2002; Rust et al. 2005;
Schwartz et al. 2006). Hence, the resulting spike trains
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(a)

(b)

(c)

Fig. 8 Significance testing of relevant stimulus directions.
(a) Effect of finite sampling on the eigenvalue spectrum. (a1)
The spectrum of ranked eigenvalues shows a smooth decay when
only few spikes are analyzed (23 spikes). (a2) As more and
more spikes are included in the analysis, eigenvalues of irrele-
vant directions converge and eigenvalues of relevant directions
become distinctly separated from the baseline. (a3) In the limit
of large data sets (here 5,000 spikes), the spectrum arrives at a
clear distinction between relevant and irrelevant eigenvalues. (b)
and (c) Comparison of the eigenvalues obtained from the actual
spikes (black circles) to 95 % confidence intervals (gray area
delimited by red lines) obtained from randomly rotating spike-
triggered stimuli in the hypothesized irrelevant space. (b) 5,000
analyzed spikes. (c) 50 analyzed spikes. (b1) and (c1) Rotations
are performed in the full 20-dimensional space. Eigenvalues lie
outside the confidence interval. (b2) and (c2) After the stimulus
component in the direction of the eigenvector of the first eigen-
value is projected out, rotations are performed in the remaining
19-dimensional space. The second eigenvalue still lies outside the
confidence interval. (b3) and (c3) When the stimulus components
in the directions of the first two eigenvectors are projected out,
rotations are performed in the remaining 18-dimensional space.
Now all remaining eigenvalues fall inside the confidence interval,
so the corresponding stimulus space retains a degree of spherical
symmetry that is compatible with the irrelevant space

generate eigenvalue spectra that deviate from degener-
acy only through finite-sampling effects that result from
the number of analyzed spikes. The actual spectrum is
then compared to the range of values obtained from
the randomly shifted spike trains. Only outliers that
significantly deviate from the resampled range qualify
as eigenvalues associated with relevant directions.

The procedure has to be performed in a nested
fashion because the finite-size effects depend on the
dimensionality of the investigated stimulus subspace.
First, the full stimulus space is tested. If its eigenvalue
spectrum is found to be inconsistent with having no
relevant directions, the stimulus direction correspond-
ing to the eigenvalue that deviates most from unity
is identified as a relevant direction and projected out
from all stimuli. Next, the analysis is repeated in the
reduced stimulus space. The procedure is iterated until
the remaining eigenvalue spectrum is consistent with no
further relevant directions.

For the case of a non-Gaussian stimulus distrib-
ution, this procedure is not directly applicable. The
reason is, again, that relevant and irrelevant stimu-
lus directions are not independent. Randomly shifting
spike times creates a new ensemble of stimulus seg-
ments whose statistics are then compared to the spike-
triggered stimulus ensemble. However, the statistics of
such an artificial stimulus ensemble differ from the
spike-triggered ensemble even along irrelevant direc-
tions. The simplest example is that the variance along
irrelevant directions within the spike-triggered stimulus
ensemble differs from unity (as seen in the baseline
level of eigenvalues in Fig. 5(c2)), but for a random
stimulus ensemble, this variance is equal to the prior
variance, set to unity.

We therefore use a different resampling strategy to
test whether the eigenvalue spectrum of a candidate
subspace is consistent with a spectrum expected from
an irrelevant space. To do so, we note that the dis-
tribution of spike-triggered stimuli retains the spher-
ical symmetry inside the irrelevant subspace. If the
candidate subspace is indeed the irrelevant subspace,
the distribution of projections of the spike-triggered
stimuli on the proposed subspace must be spherically
symmetric, at least inasmuch as can be expected for the
analyzed amounts of data. The null-hypothesis that we
aim to test is thus whether the observed distribution
of eigenvalues is consistent with spherical symmetry
within the candidate subspace, given finite sampling.
Therefore, resampling is carried out by randomly rotat-
ing each spike-triggered stimulus within this subspace.
The random rotation of each spike-triggered stimulus
can easily be obtained by taking the projection of the
stimulus onto the candidate subspace, computing its
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vector length, and replacing the projection by a vector
with the same length in a random direction within the
candidate subspace. Practically, the random direction
can be obtained, for example, by randomly drawing
vector components from a Gaussian distribution and
then normalizing the obtained random vector.

The resulting resampled stimulus distribution is, by
construction, spherically symmetric in the investigated
subspace, but retains the original distribution of ab-
solute values. Therefore, if the candidate subspace is
indeed an irrelevant subspace, then the eigenvalues of
the resampled stimuli necessarily scatter around the
same baseline level as the eigenvalues of the actual
spike-triggered stimuli. We thus perform STC analysis
on the set of rotated spike-triggered stimuli and repeat
this procedure many times in order to determine the
mean value of each of the ranked eigenvalues as well as
confidence intervals.

Just like the resampling procedure that is based on
shifting spike times, this analysis is performed in a
nested fashion. The procedure is illustrated in Fig. 8(b)
and (c) for the model used in Fig. 5(c) with a spherically
symmetric stimulus distribution on the surface of a 20-
dimensional sphere and two relevant directions. In the
first round, all spike-triggered stimuli are rotated in
the full N-dimensional stimulus space, and we test the
null-hypothesis that there are no relevant directions, so
the entire spike-triggered stimulus distribution is spher-
ically symmetric. If the eigenvalues do not lie within
the pre-specified confidence limits, say 95 % confidence
intervals, the hypothesis is rejected, as is the case of
panels (b1) and (c1). The eigenvector whose eigenvalue
deviates most from the confidence interval is then iden-
tified as a relevant direction, and it is projected out
from all spike-triggered stimuli for further significance
testing. In the second round, we test the null-hypothesis
that there are no relevant directions in the remaining
stimulus space, based on the remaining N − 1 eigen-
values. Now, stimulus lengths are calculated in the re-
maining (N − 1)-dimensional subspace, and eigenvalue
spectra of randomly rotated vectors are obtained from
random vectors with the correct vector lengths in an
(N − 1)-dimensional space. The procedure is iterated
until the remaining eigenvalues lie within the specified
confidence intervals. Figure 8(c) shows that the method
correctly identifies two relevant filters in our example,
even when using as few as 50 spikes and having no
obvious degenerate baseline.

The significance test for the sphericity of stimulus
distributions can easily be extended to elliptic distrib-
utions. The null-hypothesis should now state that the
distribution of spike-triggered stimuli in the investi-
gated subspace displays the same elliptic symmetry

as the prior distribution. To use the resampling pro-
cedure, one can thus simply determine the stimulus
length of a spike-triggered stimulus after applying the
whitening transformation, Eq. (22), and then perform
the rotation, the subsequent eigenvalue analysis, and
the elimination of identified relevant directions in the
transformed, spherically symmetric space.

6 Discussion

Spike-triggered covariance analysis is generally used
for identifying multiple relevant dimensions from
Gaussian stimuli by finding differences in variance be-
tween the prior and the spike-triggered stimulus distri-
butions. It has been noted that in this form, the analy-
sis is not applicable to non-Gaussian stimuli (Paninski
2003; Simoncelli et al. 2004; Schwartz et al. 2006), in
contrast to spike-triggered average analysis. Here, we
have provided a geometric picture of STC analysis and
have thereby shown that STC analysis is applicable to
general spherically symmetric distributions when the
criterion for identifying relevant directions is modified.
The modified criterion consists of detecting eigenvalues
of the STC matrix that differ from the common baseline
of degenerate eigenvalues, even if this baseline does
not correspond to the variance of the prior distribution.
Moreover, we have shown that the new approach can
also be extended to elliptic stimulus distributions. We
thus conclude that the consistency of STC analysis
requires special symmetries in the prior stimulus dis-
tribution (spherical, or more generally, elliptic). Gaus-
sianity, instead, is not indispensable.

6.1 Non-Gaussian stimuli in practice

Non-Gaussian spherical or elliptic stimulus distribu-
tions are, of course, not nearly as frequently encoun-
tered in experimental situations as Gaussian distribu-
tions, primarily because time series of Gaussian stimuli
s can be obtained in a continuous fashion by drawing
new stimulus components s(t) from a Gaussian distrib-
ution. No such continuous generation of stimuli with a
spherical, non-Gaussian distribution is possible. Appli-
cation of the extended method may thus become useful
when experiments are performed with stimuli that do
not contain temporal dimensions, for example, when
the components of s represent spatial stimulus elements
(cf. Fig. 1(b)). In this case, general spherical distribu-
tions allow more flexibility than Gaussian stimuli. They
may serve, for example, to provide contrast normal-
ization for each presented stimulus or to use stimulus
distributions that drive the investigated neurons more
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efficiently than a Gaussian stimulus does (Ringach et al.
1997).

For the visual system, an interesting scenario might
be the investigation of flashed images (Gollisch and
Meister 2008b) or images that are presented in a
saccade–fixation context (Segev et al. 2007). Other
relevant scenarios may come from experiments where
the temporal domain is intrinsically less relevant be-
cause of slower data acquisition. This may occur, for
example, when analyzing data from calcium imaging,
voltage-sensitive-dye imaging, or similar experiments.
Here, spike-triggered analyses might be transformed
into fluorescence-triggered analyses: Instead of select-
ing stimulus segments based on whether they elicited
a spike or not, all stimulus segments are considered,
but weighted by the elicited response strength, i.e. the
fluorescence signal. This is analogous to working with
trial-averaged firing rates or intracellularly measured
synaptic currents (Demb 2008; Schwartz and Rieke
2011). As the temporal resolution of fluorescence imag-
ing experiments is often not sufficient for analyzing
temporal stimulus integration characteristics, it makes
sense to present stimuli in a one-by-one fashion instead
of a continuously updating time series.

Finally, even temporal stimulus attributes may be
analyzed with non-Gaussian spherical stimulus distrib-
utions if a continuous stimulus update is not required.
One such scenario occurs when individual stimulus seg-
ments are locked to external events such as a saccade
(Geffen et al. 2007) or a contrast switch (Baccus and
Meister 2002).

6.2 Connection to Wiener series

STA and STC analyses are closely connected to the
theory of Wiener series (Wiener 1958), which can be
used to model the stimulus–response relation of a neu-
ron by the first few terms of a functional expansion. For
Gaussian white noise stimulation, this expansion can be
systematically obtained by the Lee–Schetzen method,
which derives the kernels of the Wiener series from
various crosscorrelations between the stimulus and the
response (Lee and Schetzen 1965), similar to the re-
verse correlation in STA and STC analysis. In fact, the
first-order kernel of the Wiener series corresponds to
the STA, and the second-order kernel of the series is
obtained from the STC matrix.

For non-white Gaussian stimuli, this analogy still
holds. The crosscorrelation method for obtaining the
kernels of the Wiener series has been extended analo-
gously to the derivation shown here in Section 4: apply
a whitening transformation, obtain the Wiener kernels
in the transformed space, and translate the results back

to the original space, which in the case of Wiener
series means to prepend the kernel operations with
the whitening transformation (Lee and Schetzen 1965;
Schetzen 1974).

Furthermore, efforts have been made to extend
the method of Wiener series expansion or develop
analogous functional expansion strategies for various
types of non-Gaussian stimuli, such as spike-like inputs
(Krausz 1975), noise stimuli with discrete input levels
(Marmarelis 1977), superpositions of sinusoids (Victor
and Knight 1979), and certain nonlinearly transformed
Gaussian stimuli (Schetzen 1981). However, comparing
these approaches to the treatment of non-Gaussian
inputs in Section 3 highlights an important difference
between the functional series models and the LN-
model-based approach as in the present work. For the
latter, the goal is generally to find the filters km that
describe the system’s response according to Eq. (5),
independently of the applied stimulus. This means that
ideally the exact same relevant space should be ob-
tained if the system is probed with different stimulus
distributions. By contrast, the functional series models
typically aim at minimizing the quadratic error between
the predicted and the actual response for a given stim-
ulus and a given order of the series expansion. The
optimal kernels, which achieve this minimal error, may
well depend on the applied stimulus, in particular for
non-Gaussian stimuli where the constraints on the prior
stimulus distribution might actually be exploited for
response prediction. It is thus not surprising that analo-
gies between Wiener series and STA and STC analysis
for non-Gaussian stimuli appear less straightforward;
yet, further exploration of the relation between these
approaches for different stimulus distributions should
prove a promising route for future investigations to
arrive at a deeper understanding of the scope of these
methods.

6.3 A diversity of approaches in STC analysis

STC analysis has been formulated in several different
versions, both in this work and in several previous stud-
ies. These different approaches are, of course, related
to each other, though not always equivalent. In the
following, we discuss some of their connections.

STC with and without subtracting the STA Not sur-
prisingly, the STA always lies in the relevant subspace,
as shown in Section 3.2. This means that STC analysis
can be performed with the actual covariance matrix
of spike-triggered stimuli as well as with a variant of
this matrix where the STA is not subtracted. The latter
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might be referred to as a matrix of second moments
rather than an actual covariance, and it has also been
termed “non-centered spike-triggered covariance ma-
trix” (Cantrell et al. 2010). While both variants gener-
ally identify the correct relevant subspace, the obtained
eigenvalue spectra and individual eigenvectors are typ-
ically different, as exemplified in Fig. 4. Comparing the
spectra of STC analysis with and without subtracting
the STA may thus serve as a simple consistency check
and flag certain cases where one of the approaches fails
to identify all relevant directions because the corre-
sponding eigenvalue happens to coincide with the base-
line of the irrelevant spectrum. As mentioned earlier,
on the other hand, such a scenario is typically also
picked up by explicitly including the STA when de-
termining the relevant subspace, or more generally, by
using an estimator that directly combines information
from changes in stimulus mean and variance (Pillow
and Simoncelli 2006).

Relevant directions as eigenvectors of �C In several
previous studies (Brenner et al. 2000; Agüera y Arcas
and Fairhall 2003; Agüera y Arcas et al. 2003; Fairhall
et al. 2006; Maravall et al. 2007), covariance analysis
was based on diagonalizing the matrix �C = Cs − Cp.
For spherical stimulus distributions with unit variance
of each stimulus component, Cp is the identity matrix.
The eigenvectors of �C thus coincide with those of Cs,
and the eigenvalues are shifted downwards by one unit.
The relevant and irrelevant directions of �C, hence,
coincide with those of Cs.

For a Gaussian elliptic stimulus distribution, �C
still identifies the relevant subspace correctly (Bialek
and de Ruyter van Steveninck 2005); the obtained
relevant eigenvectors simply need to be premultiplied
by C−1

p to correct for the correlations of the prior
stimulus distribution. The eigenvalue spectrum and the
individual eigenvectors now typically differ from those
obtained with the procedures discussed in Section 4.
Yet, the relevant spaces obtained with both methods
coincide. Interestingly, we have seen above that rel-
evant and irrelevant directions transform differently.
The difference also appears when diagonalizing �C,
since irrelevant directions must be premultiplied by Cp,
and not by C−1

p . This ensures that relevant directions
remain orthogonal to irrelevant directions.

The investigation of elliptic stimulus distributions
through �C is only guaranteed to work with Gaussian
stimulus distributions. As shown in Fig. 7, elliptic non-
Gaussian stimulus distributions can lead to spurious
eigenvalues deviating from the zero baseline level with
this approach.

Relevant directions as stimulus directions of modif ied
variance A relevant eigenvector w fulfills the equa-
tion C−1

p Csw = λw. With a little bit of algebra,
it follows that the associated eigenvalue is λ =(
wTCsw

)
/
(
wTCpw

)
. This expression represents a ratio

of variances (Schwartz et al. 2006): the variance of
the spike-eliciting stimuli to the variance of the prior
stimuli, both measured along the direction of w. Thus,
searching for directions in stimulus space where this
ratio is “unusual”, meaning that it differs from the base-
line of variance ratios of irrelevant directions, serves
as a way to identify relevant stimulus directions. This
procedure is equivalent to the eigenvalue analysis of
C−1

p Cs.
Covariance analysis reveals changes in variances and

is thus sensitive only to modifications up to the second
moment of the probability distribution; higher order
effects are not considered. Conversely, if for Gaussian
stimulation the variance is altered in direction km, then
for sure this direction belongs to K. Hence, the de-
tectability by covariance analysis is a sufficient, but not
a necessary condition, for a direction to be relevant in
the sense of Eq. (5).

6.4 Further characterization of the relevant space

As mentioned before, Eq. (5) defines the relevant space
K unambiguously, but different sets of the individual
filters km may be chosen without affecting the final
spike probability. Even so, one may sometimes be in-
terested in distinguishing between different directions
inside K. In some cases, additional structure within the
relevant subspace may suggest a particular choice of
the filters. As an example, cluster analysis of spike-
triggered stimuli has been used to find filters within the
relevant subspace that likely match actual physiolog-
ical pathways (Fairhall et al. 2006; Geffen et al. 2007;
Gollisch and Meister 2008a).

Alternatively, relevant directions may be distin-
guished based on the magnitude and sign of the change
in variance along each direction. The latter has been
used to classify relevant directions as either excitatory
or suppressive, depending on whether the variance of
spike-triggered stimuli is increased or decreased com-
pared to the prior stimulus (Schwartz et al. 2002; Rust
et al. 2004, 2005; Simoncelli et al. 2004; Schwartz et al.
2006). The classification into excitatory and suppressive
stimulus directions through the magnitude of the eigen-
value makes sense only for relevant directions that are
perpendicular to the STA. The STA itself, which usu-
ally functions as an excitatory stimulus direction, can
be associated with an increase or decrease in variance,
depending on the nonlinearity ϕ. Therefore, in those
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studies, the STA is typically projected out from each
stimulus vector in order to then determine relevant
directions orthogonal to the STA.

When the stimulus is not Gaussian, however, the size
of an eigenvalue also reflects the effect of the interfer-
ence between different stimulus directions imposed by
the constraints of the prior stimulus distribution. For
example, changing the nonlinearity along one relevant
direction typically affects also the eigenvalues of other
relevant directions. It is thus less straightforward to
distinguish between excitatory and suppressive direc-
tions depending on the size of the eigenvalue. Yet, for
most practical purposes, a distinction based on whether
eigenvalues of relevant directions lie above or below
the baseline level of irrelevant directions should pro-
vide a useful classification in terms of the excitatory
or suppressive nature of relevant directions, given the
constraints of the particular prior stimulus distribution.

Further characterization of the relevant space can
come from observing degeneracies in the eigenvalue
spectrum. These reflect fundamental properties of the
firing probability, at least as long as the prior stimulus
distribution is spherically symmetric. Even within the
relevant space, eigenvalue degeneracies may be infor-
mative. A degeneracy in two or more relevant direc-
tions implies that the firing probability is endowed with
additional symmetry properties: The variance is equally
altered in several relevant directions. The eigenspaces
associated with those symmetries are fundamental
characteristics of the firing probability. Examples of
such degeneracies in the relevant space have been
found. Modeling studies have shown that resonator
neurons are sometimes only selective to the stimulus
frequency, but not to its phase (Mato and Samengo
2008). In such cases, covariance analysis detects a de-
generate two-dimensional relevant eigenspace, gener-
ated by two periodic eigenvectors with a 90◦ phase-
shift. Linear combinations of these two eigenvectors
generate a periodic stimulus with arbitrary phase. Ex-
perimental studies of visual neurons in the fly (Bialek
and de Ruyter van Steveninck 2005) and complex cells
in mammalian visual cortex (Touryan et al. 2002; Rust
et al. 2005) have reported similar degeneracies; the
relevant space contained degenerate, two-dimensional
eigenspaces, characterized by well-defined location,
orientation, and frequency, with arbitrary phase.

7 Conclusion

Here we have provided a geometric proof of consis-
tency of spike-triggered covariance analysis. The geo-
metric approach has led to an extension of the tech-

nique to arbitrary (non-Gaussian) elliptic stimulus dis-
tributions. For spherical distributions, irrelevant direc-
tions typically constitute a large degenerate eigenspace
of the spike-triggered covariance matrix. Relevant di-
rections are detected as the eigenvectors whose eigen-
values depart from the baseline degenerate level. In
contrast to the Gaussian case, the value of irrelevant
eigenvalues is not known a priori; it depends on the
nonlinearity ϕ. For elliptic stimulus distributions, STC
analysis can be appropriately modified to account for
the correlations in the stimulus. This can be achieved by
performing eigenvalue analysis on a matrix equal to the
product of the inverse of the prior covariance matrix
and the spike-triggered covariance matrix.
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Appendix A

Using group-theoretical arguments, here we prove that,
for spherical stimulus distributions, the irrelevant sub-
space K⊥ is an eigenspace of Cs. The prior distribution
P(s) only depends on the length of s and therefore
remains invariant under any orthogonal transformation
of the s-space, that is, any transformation that preserves
the lengths of all vectors. Orthogonal transformations
fulfill the condition OT = O−1. In addition, any trans-
formation Oi acting only on the irrelevant subspace K⊥
also leaves the spike probability ϕ(kT

1 s, . . . , kT
M s)

invariant:

ϕ
(

kT
1 s, . . . , kT

Ms
)

= ϕ
(

kT
1 Ois, . . . , kT

M Ois
)

. (31)

There are many such orthogonal transformations Oi.
For example, all rotations whose rotation plane is con-
tained in the irrelevant space and all reflections that
invert stimulus directions within the irrelevant space
leave ϕ invariant. These transformations, together with
the ones obtained by combining them, constitute a
group: the symmetry group of P(s|spike). More for-
mally, these transformations define a representation of
this symmetry group. Since there is no proper subspace
of K⊥ that remains invariant under the action of all the
Oi of the group, the irrelevant space is an irreducible
space of the representation.

The transformations Oi only operate in the irrele-
vant space and thus leave the relevant vectors invariant.
In particular, the STA is left unchanged: Starting from
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the integral in Eq. (12) and introducing an orthogonal
change of variables s = Ois′, we arrive at

〈s〉 = Oi〈s〉. (32)

Using this same change of variables in the calculation
of 〈ssT〉, we see that
〈
ssT 〉 = Oi

〈
ssT 〉

O−1
i . (33)

Therefore, the matrix Cs commutes with Oi,

Cs = 〈
ssT 〉 − 〈s〉〈s〉T = Oi Cs O−1

i . (34)

In group theory, Schur’s lemma states that if an oper-
ator commutes with all the matrices of an irreducible
representation, then, inside the irreducible space of the
representation, the operator is proportional to the unit
matrix (Wiegner 1959; Tinkham 1964). Therefore, K⊥
must be an eigenspace of Cs.

To illustrate the application of Schur’s lemma in this
case, we note that if v ∈ K⊥ is an eigenvector of Cs with
eigenvalue λ, then Eq. (34) implies that Oiv is also an
eigenvector of Cs with eigenvalue λ. By appropriately
choosing Oi, any vector v′ ∈ K⊥ whose length is equal
to |v| can be written as v′ = Oiv. Therefore, the whole
of K⊥ is an eigenspace of Cs. The same reasoning can
be applied to the STC matrix when the spike-triggered
average is not subtracted.

As a final remark, we point out that if P(s|spike) also
contains a symmetry group inside the relevant space
and if the associated irreducible space has dimension
larger than 1, degeneracies also appear in K. Of course,
P(s|spike) might have no symmetry in the relevant sub-
space. But if, for example, ϕ(kT

1 s, . . . , kT
M s) only de-

pends on (kT
1 s)2 + (kT

2 s)2 + . . . (kT
Ms)2, then when the

prior stimulus distribution is spherical, also the relevant
directions have degenerate eigenvalues. In Fig. 5, for
example, the relevant eigenvalues of Cs are degener-
ate. This is not the case in Fig. 4, where the firing
probability is not symmetric. In Fig. 6, instead, the
firing probability is indeed symmetric, but the prior
stimulus is not. Thus the degeneracy with respect to
the relevant eigenvectors of C−1

p Cs is broken. In Fig. 7,
the degeneracy is recovered, since the prior stimulus
distribution is elliptic, but is (almost) spherical in K.

Appendix B

In Section 4, we extended STC analysis to general
elliptic stimulus distributions. This extension was based
on a transformation to a spherically symmetric stimulus
distribution, for which the previously derived results

were applicable. Here we provide the analogous exten-
sion for the STA.

When the spike probability ϕ contains a single rele-
vant direction k1, the STA is proportional to k1 if the
stimulus distribution is spherical (Chichilnisky 2001). If
the stimulus distribution is elliptic, new variables s′ can
be defined via Eq. (22), such that the prior stimulus dis-
tribution P(s′) is spherical. In the transformed stimulus
space, the STA

〈s′〉 =
∫

ds′ P(s′|spike) s′ (35)

is then proportional to the filter,

k′
1 ∝ 〈s′〉. (36)

In order to obtain the relation of STA and filter in
the original space, we note that, because the integral
in Eq. (35) can be transformed using s′ = D−1/2 OT s
and ds′ P(s′|spike) = dsP(s|spike), the transformation
rule for the STA is the same as for individual stimuli,
Eq. (22),

〈s′〉 = D−1/2 OT 〈s〉. (37)

Furthermore, the backward transformation for k′
1 is

that of a relevant stimulus direction, Eq. (28),

k1 = O D−1/2 k′
1, (38)

so that the scalar products kT
1 s are preserved. Putting

Eqs. (36)–(38) together, we obtain

k1 ∝ O D−1/2 D−1/2 OT 〈s〉 = C−1
p 〈s〉. (39)

We therefore arrive at the well-known recipe for esti-
mating the single relevant direction by premultiplying
the STA by the inverse of the prior covariance ma-
trix (Theunissen et al. 2001; Paninski 2003; Schwartz
et al. 2006). The derivation is valid for any elliptic
stimulus distribution, not necessarily Gaussian. How-
ever, beyond elliptic stimulus distributions (e.g., natural
stimulation), the premultiplication by C−1

p still does not
generally suffice to obtain the relevant filter from the
STA (Sharpee et al. 2004).
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