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Schaette, Roland, Tim Gollisch, and Andreas V. M. Herz.
Spike-train variability of auditory neurons in vivo: dynamic
responses follow predictions from constant stimuli. J Neurophysiol
93: 3270 –3281, 2005. First published February 2, 2005;
doi:10.1152/jn.00758.2004. Reliable accounts of the variability ob-
served in neural spike trains are a prerequisite for the proper inter-
pretation of neural dynamics and coding principles. Models that
accurately describe neural variability over a wide range of stimulation
and response patterns are therefore highly desirable, especially if they
can explain this variability in terms of basic neural observables and
parameters such as firing rate and refractory period. In this work, we
analyze the response variability recorded in vivo from locust auditory
receptor neurons under acoustic stimulation. In agreement with results
from other systems, our data suggest that neural refractoriness has a
strong influence on spike-train variability. We therefore explore a
stochastic model of spike generation that includes refractoriness
through a recovery function. Because our experimental data are
consistent with a renewal process, the recovery function can be
derived from a single interspike-interval histogram obtained under
constant stimulation. The resulting description yields quantitatively
accurate predictions of the response variability over the whole range
of firing rates for constant-intensity as well as amplitude-modulated
sound stimuli. Model parameters obtained from constant stimulation
can be used to predict the variability in response to dynamic stimuli.
These results demonstrate that key ingredients of the stochastic
response dynamics of a sensory neuron are faithfully captured by a
simple stochastic model framework.

I N T R O D U C T I O N

Sensory neurons provide an animal with the primary repre-
sentation of its environment and internal state. Any computa-
tion and behavioral decision has to be based on this represen-
tation. Yet even under controlled laboratory conditions, re-
peated stimulus presentations often lead to a considerable
trial-to-trial variability of neural responses. This is particularly
true for cortical neurons, which typically discharge with high
variability under in vivo conditions (Buracas et al. 1998; Holt
et al. 1996; Shadlen and Newsome 1998; Stevens and Zador
1998). As expected for Poisson-like random processes, coeffi-
cients of variation near unity and spike-count variances equal
to or even above the mean count have been found (Softky and
Koch 1993; Teich et al. 1996).

On the other hand, neural response characteristics depend
sensitively on the temporal features of the stimulus pattern
(Mainen and Sejnowski 1995), which is of special importance
for sensory neurons receiving highly structured dynamic stim-
uli (de Ruyter van Steveninck et al. 1997; Kara et al. 2000;

Machens et al. 2001; Warzecha et al. 2000). Indeed, for
appropriate inputs, individual spikes can be highly reliable and
precisely timed (Berry et al. 1997; Reinagel and Reid 2002),
resulting in spike-count variances far below the mean spike
count (de Ruyter van Steveninck et al. 1997; Warzecha and
Egelhaaf 1999).

A central question in understanding neural coding principles
therefore concerns the nature, origin, and computational im-
plications of neural variability. To investigate these aspects, it
is essential to advance stochastic descriptions of neural re-
sponse dynamics that are valid over a broad spectrum of
conditions including different neural activation strengths and
different types of temporal stimulus modulation.

Based on in vivo recordings from locust auditory receptor
neurons, a model system for the auditory periphery of insects
(Michelsen 1971; Römer 1976; Ronacher and Krahe 2000;
Stumpner and von Helversen 2001), we systematically explore
a phenomenological description that captures the spike-train
statistics at different average firing rates and that applies to
constant as well as temporally modulated sound stimuli. Be-
cause the receptors are the first stage of the auditory system,
the experimentally observed response variability is not inher-
ited from other neurons, but must be caused by intrinsic
processes. Furthermore, the accuracy and reliability of re-
sponses in the investigated cells has been shown to be strongly
influenced by the stimulus statistics (Machens et al. 2001,
2003), which poses a particular challenge for the mathematical
description.

To characterize the receptor dynamics within a general
theoretical framework, we first assess the spike-train variability
in response to constant-intensity stimuli over a large range of
sound frequencies and intensities. The observed interspike
interval (ISI) statistics suggests that spike generation can be
modeled by a renewal process (Cox 1962). To account for
neural refractoriness, recovery functions (Berry and Meister
1998; Johnson 1996) are incorporated into the framework. We
use a particularly simple realization where for each cell, one
recovery function is determined from a single ISI distribution
that is obtained from stimulation with a constant sine tone. As
shown by our data, a renewal process based on such a recovery
function faithfully describes the shape of ISI distributions for
arbitrary sound frequencies and intensities. Combining this
stochastic spike generator with a deterministic stimulus en-
coder allows us to calibrate the model neurons with indepen-
dent measurements of the receptors’ input–output relation. Our
results are therefore direct predictions from the stimulus and do
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not rely on an observed poststimulus time histogram (PSTH).
The general model accurately accounts for spike-train variabil-
ity in response to a variety of both constant and dynamic
stimuli.

M E T H O D S

Electrophysiology

All experiments were performed on adult locusts (L. migratoria).
Legs, wings, head, and gut were removed to immobilize the animals
and to facilitate access to the metathoracic ganglion and auditory
nerve. Preparations were fixed with wax, ventral side down, onto a
Peltier element.

The dorsal part of the thorax was opened to expose the metathoracic
ganglion and the auditory nerve, which was fixed with a custom-made
forceps mounted on a micromanipulator. During the experiments,
preparations were kept at a fixed temperature of about 30°C. Acoustic
stimuli were presented by loudspeakers [Esotec D-260, Dynaudio
(Skanderborg, Denmark) on a DCA 450 amplifier (Denon Electronic
GmbH, Ratingen, Germany)]. Receptor cells were recorded intracel-
lularly from the axon in the auditory nerve with standard glass
microelectrodes (borosilicate, GC100F10; Harvard Apparatus, Eden-
bridge, UK), filled with a 1 M KCl solution (30–60 M� resistance).
Neural responses were amplified (BRAMP-01, NPI Electronis,
Tamm, Germany) and recorded by a data-acquisition board (National
Instruments, PCI-MIO-16E-1) with a sampling rate of 10 kHz. Stim-
ulus generation, spike detection, and data analysis were performed
using custom-made software. Spike times were determined with a
temporal resolution of 0.1 ms and stored for off-line analysis. The
response latency, estimated separately for each neuron from the
shortest observed time difference between stimulus onset and the first
spike, was subtracted from the spike times. In all experiments, the first
300 ms of the response were discarded to minimize the influence of
firing-rate adaptation (Benda 2002). The experimental protocol com-
plied with German law governing animal care.

Stimulus design

Pure tones whose frequencies ranged from 1 to 40 kHz were used
to determine threshold curves and thus to classify each cell as one of
4 standard receptor cell types (Römer 1976). Types I–III have their
greatest sensitivity in the lower-frequency range between 3 and 8 kHz
with differences in absolute sensitivity and the exact location of the
sensitivity maximum; type IV is most sensitive at high frequencies
around 15 kHz.

In the first set of experiments, stimuli were pure tones of constant
intensity and 1-s duration, followed by a 1-s–long quiet pause. One
group of 8 cells was stimulated with at least 4 different sound
frequencies (between 3 and 11 kHz for low-frequency receptors;
between 12 and 25 kHz for high-frequency receptors). These stimuli
were repeated up to 10 times. For another group of 11 cells, the sound
frequency was set to the characteristic frequency (i.e., the frequency
of highest sensitivity). In this paradigm, stimuli were repeated up to
50 times. For both groups, 5 to 10 different sound intensities were
used to cover the whole range of firing rates from threshold to
saturation. From the recorded spike trains, ISI distributions and
coefficients of variation (see Data analysis) were calculated.

In a second set of experiments, stimuli were pure tones at the cell’s
characteristic frequency whose amplitudes were modulated by Gauss-
ian white noise with a cutoff frequency of 400 Hz. The standard
deviation of the noise signal around the mean intensity I0 was either
3 dB (5 cells) or 5 dB (one cell). To restrict the amplitudes within a
finite range, the tails of the Gaussian distributions were cut off at 4
SDs. The modulation depths (defined as the central 95% of the
amplitude distribution) of the stimuli were 11.76 dB [3 dB SD

stimulus] and 19.6 dB (5 dB SD stimulus). Stimuli were again 1 s
long, separated by 1-s–long pauses, and now repeated 60 times.

Data analysis

FIRING RATE AND SPIKE-TRAIN VARIABILITY. Firing rates were cal-
culated as trial averages of spike counts in sliding windows of 10 ms
length. The variability of interspike intervals (ISIs) was analyzed
using the coefficient of variation (CV), which is defined as the ratio
between the standard deviation �ISI of the ISI distribution and its
average �ISI�

CV �
�ISI

�ISI�
(1)

To quantify the spike-count variability, Fano factors (Fano 1947) were
calculated. The Fano factor F(T) is derived from the spike-count
distribution for a certain counting time T by dividing the variance of
the spike count �N(T)

2 by its average �N(T)�

F�T� �
�N�T�

2

�N�T��
(2)

The errors of the measured CV values and Fano factors were deter-
mined using the bootstrap method. New synthetic data sets, number-
ing 100, were constructed from the original data (ISIs or spike counts)
by drawing randomly with replacement. Each synthetic data set had
the same size as the original data. CVs or Fano factors were calculated
for each synthetic data set, and the SDs of these reevaluated quantities
were taken as an estimate of the error of the original CV/Fano factor.

To assess the quality of the model’s Fano factor predictions, we
quantified the absolute deviation of the model Fano factor Fm(t) from
the experimental Fano factor Fe(t) for each time point t, and scaled
this deviation by the error of the experimental Fano factor
Error [Fe(t)] at the same point in time. The scaled deviation was then
averaged over time to yield the mean relative prediction error

Errorp � ��Fm�t� � Fe�t��
Error �Fe�t��

� (3)

To quantify spike timing reliability in experimental and model spike
trains, we used a correlation-based measure introduced by Schreiber et
al. (2003): The spike trains obtained from N repeated presentations of
a stimulus are convolved with a Gaussian filter with width (SD of the
Gaussian) �c, yielding a smoothed representation si(t) of the spike
trains, where the index i enumerates the repeated stimulus represen-
tations. These representations can also be viewed as vectors si

3, where
every component corresponds to a point in time. Subsequently, the
inner product is taken between all possible pairs of spike trains si

3, sj
3

and each inner product is then divided by the norms of the 2 spike
trains of the representative pair. The average over all pairs of spike
trains is then taken as the reliability Rcorr

Rcorr �
2

N�N � 1�
�
i�1

N	1 �
j�i
1

N si
3

� sj
3

�si
3��sj
3�

(4)

This measure takes values between 0 (minimum reliability) and 1
(maximum reliability). We used values of 0.5 to 3 ms for the filter
width �c to quantify the spike-timing reliability on different
timescales.

INDEPENDENCE OF INTERSPIKE INTERVALS. Modeling stochastic
neural responses is greatly facilitated if the ISIs can be assumed to be
independent under constant stimulation (see Model). Two tests are par-
ticularly suited to investigate whether this assumption is satisfied by the
spike trains under study. In the first test, correlations between an inter-
spike interval ISIk and any of its successors ISIk
j are analyzed by
calculating serial correlation coefficients rj for lags j up to 20 ( j � 0)
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rj �
�ISIk
j � ISIk� � �ISIk�

2

�ISI
2 (5)

where �ISI
2 denotes the variance of the ISIs, and � � � stands for the

average over k. Because independence implies the lack of correla-
tions, serial correlation coefficients for j � 1 that significantly differ
from zero indicate that the ISIs are not independently distributed.

For a renewal process with independent ISIs, the autocorrelation
function can be calculated from the ISI distribution (Perkel et al.
1967). Therefore we used a comparison of the autocorrelation func-
tion C(�) of the observed spike train (mean not subtracted) to the
autocorrelation function Ciid(�) of a spike train with the same ISI
distribution and independent, identically distributed (iid) ISIs as a
second test for independence of ISIs. Ciid(�) is equal to the iterative
convolution of the ISI distribution PISI(�) (see Perkel et al. 1967 for
a detailed derivation)

Ciid��� � PISI��� ��
0

�

d� PISI��� � PISI�� � ��

��
0

�

d�1 �
0

�	�1

d�2 PISI��1� � PISI��2� � PISI�� � �1 � �2� � . . . (6)

In practice, a finite number of terms is sufficient because neurons do
not exhibit infinitely small ISIs. If C(�) and Ciid(�) differ signifi-
cantly, the observed ISIs cannot be assumed independent.

Model

Our model is based on the assumption that spikes are generated
stochastically at time t with a probability that depends on the product
of 2 terms only: the strength q(t) of an “effective stimulus” at that very
moment and a term that depends on the length of the interval � since
the last spike (generated at time tlast � t 	 �). Earlier spikes or the
stimulus strength between tlast and t do not influence spike generation
at time t. For time-independent stimuli [i.e., q(t) � q], spike genera-
tion is thus a “renewal process” (Cox 1962). This implies that ISIs are
independent. For time-dependent stimuli, the latter property is no
longer true and one rather speaks of a “modulated renewal process”
(Reich et al. 1998).

The functional dependency of the spike probability on � is denoted
by w(�). This memory term, or “recovery function” (Berry and
Meister 1998; for a comparison with the “hazard function,” see
Gerstner and Kistler 2002; Johnson 1996), captures the influence of
refractoriness on the generation of the next action potential. Mathe-
matically, spike generation is thus described by a probability per unit
time (the “hazard”) �(t � tlast) that is conditional on the last spike
occurring at time tlast

��t�tlast� � q�t� � w�t � tlast� (7)

The values of the recovery function w range between zero and unity.
Within the absolute refractory period �a, even arbitrarily large stimuli
cannot elicit a spike. To capture this property, w(�) vanishes for 0 �
� � �a. It then rises monotonically to account for the relative
refractory period during which the neuron relaxes back to its normal
level of excitability. Note that the probability of spike generation
explicitly depends on the time that has passed since the last spike.
Unlike for a Poisson process, individual spikes are therefore not
independent. However, ISIs still are independent under constant
stimulation because refractoriness is not cumulative over multiple
spikes.

For a renewal process, it is possible to compute the recovery
function directly from the ISI distribution PISI(�) obtained under
constant stimulation [q(t) � q], as has been discussed in the literature
(Berry and Meister 1998; Gerstner and Kistler 2002; Johnson 1996)

w��� �
1

q

PISI���

1	�
0

�

d� PISI���

� (8)

Equation 8 can be inverted to calculate the ISI distribution from the
recovery function

PISI��� � q � w��� � exp�	q�
0

�

d� w���� (9)

Recovery functions determined from experimental data according to
Eq. 8 are often noisy because of finite sampling. Parameterized
recovery functions help to overcome this problem. We tested different
parameterizations (including single and double exponentials) and
obtained best results with Michaelis–Menten type sigmoid functions
(see e.g., Stryer 2002)

w��� � � �� � �a�
	

�� � �a�
	 � �r

	
for � 
 �a

0 for � � �a

(10)

Here �a denotes the absolute refractory period, 	 determines the
maximal curvature of the recovery function, and �r is a measure of the
duration of the relative refractory period in that w(�) has reached 50%
of its maximum value at time � � �a 
 �r.

Parameters for the recovery function of a given cell were deter-
mined from one experiment with constant sound intensity as follows:
The shortest observed ISI was taken as the absolute refractory time �a;
	 and �r were then calculated from a �2 fit of the theoretical ISI
distribution (Eq. 9) to the measured data, with the stimulus strength q
as an additional free parameter.

CALIBRATION OF THE MODEL. To compare firing rates and Fano
factors with model predictions, spike trains were generated by a
renewal process with a bin size of b � 0.1 ms and conditional spike
probability b � �(t � tlast) obtained from Eq. 7. The model was cali-
brated to the characteristics of a specific cell by computing the
recovery function w(�) from one ISI distribution measured under
constant-intensity stimulation at a single sound intensity I0, as de-
scribed above.

The effective input q of the model neuron depends on the intensity
I of the acoustic stimulus and was determined such that the observed
and the predicted mean firing rates matched. For dynamic stimuli, the
procedure becomes a more elaborate 2-step process: First, the ampli-
tude-modulated (AM) stimulus I(t) is mapped through a static non-
linearity f (I) to generate the time-varying firing rate f [I(t)]. Second,
the effective model input q is calculated from f such that when applied
to the model neuron as a constant stimulus, q causes the correct mean
firing rate f.

To carry out the first step, the experimental relation f (I) is needed.
Therefore firing rates f were measured in response to the sound
intensity I with 10 stimuli ranging from 10 dB above I0 (the mean
intensity of the AM stimulus) to 10 dB below I0. The duration of the
test stimuli was 20 ms for the highest intensities and increased linearly
with decreasing intensity to 50 ms for the lowest intensities to better
resolve lower firing rates. The measurement was repeated 20 times,
and averages were taken (see Fig. 1). Firing-rate adaptation of locust
auditory receptors causes pronounced transients in the onset response;
for prolonged stimuli, the firing rate reaches a steady state after around
100–300 ms (Benda 2002). Between the test stimuli, a constant
background stimulus with intensity I0 was therefore presented to keep
the cell in the same adaptation state as that during measurements with
the AM stimulus. The resulting “adapted” f–I curve f (I) can be
parameterized by a sigmoid function derived from the positive part of
a hyperbolic tangent (Benda 2002)
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f�I� � 	 fmax � tanhr �k � �I � Ith�� for I 
 Ith

0 for I � Ith
(11)

The function was fitted to the data by a least-square fit.
For the second step, the relation q( f ) needs to be established.

Assuming that f is approximately equal to the reciprocal of the median
ISI, q( f ) can be directly calculated for given f: Inserting the identity

�
0

median ISI

d� PISI��� � 0.5 (12)

into Eq. 8 leads to q( f ) � w(1/f ) � 2 � PISI(1/f ). Use of Eq. 9 results
in

q�f� �
ln �2�

�
0

1/f

d� w���

(13)

Together, the model input is therefore calculated as the composition of
I 3 f (Eq. 11) and f 3 q (Eq. 13), resulting in the time-dependent
effective input strength q{ f [I(t)]} (see also Fig. 2).

As a result of slow adaptation processes, the investigated neurons
exhibited slight decreases in sensitivity over the time course of the 1-s
stimulation periods. This was evident from the small but persistent
decreases of the average firing rate following the strong transients

characteristic for responses during the first 300 ms of stimulation.
Because such long-time effects could lead to systematic errors in the
analysis of short-time spike-count fluctuations, this nonstationarity
was compensated as follows: The stimulus intensity used in the model
was reduced by a time-dependent term such that average model firing
rates in the time windows from 300 to 400 and 800 to 900 ms matched
those of the recording. Because the sensitivity change was small, a
linear approximation of the decay was used for simplicity. Typical
corrections led to a stimulus decrease of 0.5 dB over the stimulation
interval.

R E S U L T S

The objective of this study is to develop a minimal model
that captures essential features of spike-train variability over a
wide range of input stimuli and neural response patterns, using
insect auditory receptors as an easily accessible model system.
Recordings were made intracellularly from the axon. We first
explore the salient properties of these neurons by analyzing
their responses to constant stimuli (pure tones of constant
intensity). We then show that the measured spike trains are
compatible with a renewal process (Cox 1962) that includes a
recovery function to describe neural refractoriness (Berry and
Meister 1998; Gerstner and Kistler 2002). Finally, we extend
the framework to time-varying stimuli (AM pure tones) and
compare the quantitative model predictions with measured test
data.

Locust auditory receptor neurons encode vibrations of the
tympanic membrane, the animal’s eardrum, in their spike
trains. In the investigated species (L. migratoria), firing rates
depend on sound intensity in a sigmoid fashion with a maximal
value at around 500 Hz (for a temperature of T � 30°C) at
stimulus onset. Under prolonged stimulation, the neurons dis-
play spike-frequency adaptation. For the present analysis, we
disregard the resulting initial firing-rate transient, which is
most prominent during the first 300 ms (Benda 2002).

Acoustic stimulus I(t)

f(I)

f[I(t)]

q(f[I(t)])

q(f)−relation:
Equation(13)

Model spike trains w(∆)

Renewal
process

FIG. 2. Schematic illustration of the model for dynamic stimuli: The
acoustic stimulus I(t) is transformed by the adapted f–I curve f (I) to yield
f [I(t)]. The model input q (f [I(t)]) can then be calculated from f [I(t)] using Eq.
13. This input signal q(t) is then used to drive a renewal process based on the
recovery function w(�) to generate model spike trains.

FIG. 1. Measuring adapted f–I curves: in this example, the receptor neuron
is first adapted to a background intensity I0 of 57 dB SPL. Short test stimuli are
then inserted to evaluate the response of the adapted neuron to intensity
changes. A: time course of the stimulus to measure an adapted f–I curve in the
range of � 10 dB around 57 dB background intensity I0. Duration of the test
stimuli was 20–50 ms, depending on their intensities (low intensities require
longer stimulus durations to resolve the resulting low firing rates). B: firing rate
(average over trials, 5-ms bin width, overlapping bins) in response to this
stimulus (20 repetitions). C: resulting adapted f–I curve (open circles) closely
matches the sigmoid fit function derived from a hyperbolic tangent (solid line).
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Firing rates determine spike-train variability for
constant stimuli

As a first step of our analysis, we investigated the variability
of interspike intervals (ISIs) in response to sound stimuli with
constant intensity. To test which parameters actually govern
the ISI variability, as measured by the coefficient of variation
(CV), we stimulated the receptors with pure tones of at least 4
different frequencies and various intensity levels. Such stimuli
generally result in different firing rates because of the neuron’s
frequency tuning. CV values also vary with stimulus intensity
and sound frequency (Fig. 3A). However, once the coefficient
of variation is plotted against the observed mean firing rate, all
curves coincide within the error bars, which indicates that the

CV can be predicted from the average firing rate for constant
stimuli independently of the stimulating sound frequency (Fig.
3B). The same observation was made for all n � 8 cells that
were recorded under this stimulus paradigm. In general, the CV
decreases monotonically with increasing firing rate. CV values
near unity occur for low firing rates (50 Hz) and approach
values near 0.2 for the highest firing rates (around 300 Hz). The
exact functional dependency differs from cell to cell (Fig. 3C).

Spike trains are consistent with a renewal process

The intrinsic biophysical properties of a given neuron may
cause arbitrarily complex spike patterns. However, if ISIs are
independent under constant stimulation, the underlying neural
dynamics correspond to a renewal process (Cox 1962), which
allows a compact mathematical description. We therefore ap-
plied 2 particularly suited tests to investigate whether the
responses to pure-tone stimuli are compatible with a renewal
process (also see METHODS).

First, we searched for ISI correlations by calculating the
serial correlation coefficients for lags of up to 20 ISIs. As
shown by the data from a sample cell, the correlations are close
to zero for all nonzero lags (Fig. 4A). The slightly negative
correlation at lag 1 indicates a small effect of adaptation
induced by the previous spike (for comparison also see Brand-
man and Nelson 2002; Chacron et al. 2001). Because the
measured correlations differ by 1 SD from zero, they were
neglected within the model framework.

Second, we compared measured autocorrelation functions of
the observed spike train with autocorrelation functions com-
puted from artificial spike trains with the same ISI distribution
but independent ISIs (see METHODS). The experimentally deter-
mined and theoretically predicted autocorrelation functions
closely match (Fig. 4, B and C).

Because neither test provided strong hints against assuming
independent ISIs, we can proceed with this assumption and
systematically explore simple renewal models to describe the
measured spike-train variability.

Recovery functions account for measured CV values and
ISI distributions

All measured ISI distributions had a minimum ISI of around
1.5 ms, rose to a maximum value, and then decayed in an
approximately exponential fashion (see also Fig. 5). The lack of
ISIs below some minimum value and the subsequent increase
reflect the influence of absolute and relative refractoriness, respec-
tively. The exponential tail of the ISI distributions indicates that
Poisson statistics is well suited for describing the generation of
action potentials for sufficiently long interspike intervals.

Because the data are consistent with a renewal process, one
is led to a description that accounts for neural refractoriness
through a recovery function w(� � t 	 tlast). This function
takes values between 0 and 1 and describes the influence of the
last spike at tlast on the generation of a spike at time t. More
precisely, the conditional rate of probabilistic spike generation
�(t � tlast) is assumed to be the product of w (t 	 tlast) and the
effective stimulus strength q(t)

��t�tlast� � q�t� � w�t � tlast� (14)

According to this equation, spike generation is governed by 2
independent terms only, with q(t) capturing all external influ-

FIG. 3. Spike-train variability under constant stimulation with pure tones
that differed in their sound frequencies and intensities. A: CV as a function of
stimulus intensity for a receptor neuron stimulated with 3-, 5-, 7-, 9-, and
11-kHz tones (3 repetitions of each stimulus; error bars: error measure for CV
values determined using bootstrap methods). Curves are displaced relative to
each other and illustrate that there is no simple functional relation between the
variability and stimulus frequency or intensity. B: CV as a function of the firing
rate; same data as in A. Although a given firing rate was evoked by tones with
rather different absolute intensities, the CV firing-rate curves match well. Same
result was obtained for all n � 8 cells recorded with this stimulation paradigm,
which suggests that the evoked firing rate suffices to predict the steady-state
variability. C: CV as a function of the firing rate for 5 different cells stimulated
at their characteristic frequencies (10–25 stimulus repetitions). Curves are
similar, but slopes, curvatures, and offsets may vary considerably between
individual cells.
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ences and w(�) describing a cell-intrinsic memory term. Note
in particular that for constant stimuli, q(t) � q is a constant.

The recovery function w(�) is a unique function for each
neuron and can be obtained from the cell’s response to a
constant stimulus, as explained in METHODS. We followed this
approach and then used w(�) to predict the shape of ISI
distributions for different sound intensities and mean firing
rates through Eq. 9. Recovery functions were calculated from
ISI distributions with an intermediate average firing rate (about
150 Hz). To avoid artifacts arising from finite sampling of the
ISI distributions, recovery functions were parameterized using
a class of standard sigmoid functions (see Eq. 10).

In the following tests of this minimal renewal model, all
parameters of a cell were kept constant. To compare the model
predictions to the ISI distributions derived from the test stim-
uli, only the stimulus strength q was adjusted so that the mean
ISIs of the model and the recording matched. As illustrated in
Fig. 5, accurate predictions of the shape of the ISI distributions
can be derived with this approach. To quantify the correspon-
dence, we compared the measured CV values with those
calculated from the predicted ISI distributions. Figure 6A
shows the combined data from all recorded cells (n � 14: 11

from the second set of experiments plus 3 with sufficient
number of repetitions from the first set), each measured at 5–24
different intensities. The CV values from the measurements
and the model match closely over the whole range of values.

FIG. 4. Statistical properties of interspike intervals (ISIs). A: serial corre-
lation coefficients (�SD) of the length of ISIs for lags �20. For all lags, the
correlation coefficients do not differ substantially from zero. Small negative
correlation at lag 1 is likely attributable to adaptation effects. B, top panel: ISI
distribution of a cell stimulated with a 4-kHz tone at 35 dB SPL intensity (25
repetitions), leading to a mean firing rate of 195 Hz. Bottom panel: spike-train
autocorrelation: thick gray line depicts the experimentally determined auto-
correlation and the thin black line is calculated from the ISI distribution under
the assumption of a renewal process. C: same cell as in B, but stimulated with
an intensity of 43 dB (25 repetitions), yielding a firing rate of 265 Hz. Bin size
in B and C: 0.1 ms.

FIG. 5. Modeling spike-time variability in response to constant stimuli. A:
binned reference ISI distribution (histogram). The smooth line is a least-
squares fit with a theoretical ISI distribution that has been calculated assuming
the sigmoid recovery function described by Eq. 9. The shortest ISI encountered
during the entire experiment was taken as the absolute refractory period (here:
1.8 ms). B: recovery function corresponding to the theoretical ISI distribution
shown in A. This function was then used to model the remaining ISI distribu-
tions; only the effective stimulus strength q was adjusted to match the observed
mean firing rates. C–F: model predictions for test ISI distributions measured at
different stimulus intensities. Although just a single model parameter was
tuned, the different shapes are met accurately. One recovery function is thus
sufficient to describe the variability of ISIs in response to different constant
stimuli.
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The variation of the observed ISI distributions and the depen-
dence of the CV on the firing rate can therefore be explained in
terms of the same underlying mechanism—the gradual recov-
ery of the cell after spike generation.

The different shapes of ISI distributions from different cells
can be accounted for by different parameters of the recovery
functions. The steepness 	 ranged from 0.4 to 5.0, with a mean
of 2.4 � 0.3. Absolute refractory periods �a were between 1.0
and 1.8 ms (mean of 1.5 � 0.1 ms), and the parameter �r
describing the relative refractory period lay between 0.8 and
4.3 ms with a mean 2.4 � 0.2 ms. The distributions of the
parameters are shown in Fig. 6B. Although there are 4 types of
receptor neurons that differ in their attachment site to the
tympanum and their frequency sensitivity (Gray 1960; Römer
1976), we did not find differences in the recovery function
parameters across types. The analyzed set of cells consisted of
4 type I receptors [characteristic frequency (CF) 
 3.5–4 kHz],
7 type II receptors (CF 
 4 kHz, lower threshold than type I),
one type III receptor (CF 
 5.5–6 kHz), and 2 type IV
receptors (CF 
 12–20 kHz), identified by CF and best-
response threshold (Römer 1976). The recovery parameters of
the type I and the type II receptor neurons were not signifi-
cantly different (P � 0.68 for 	, P � 0.64 for �r, P � 0.17 for
�a; 2-sample t-test), and the parameters for the single type III

(	 � 3.1, �r � 2.7, �a � 1.5) and the 2 type IV neurons (mean
values: 	 � 2.8, �r � 2.6, �a � 1.5) were also very similar to
the other receptor classes.

The model developed so far provides a simple and compact
description of the variability of ISIs in response to constant
stimuli. As a next step, we analyzed the variability in response
to time-varying stimuli and tested whether the model frame-
work also captures response variability for this larger class of
more complex stimuli.

Recovery functions computed from constant stimuli explain
the variability of responses to dynamic stimuli

Six cells were stimulated with AM pure tones at their CFs.
The envelope of the stimulus was Gaussian white noise with a
cutoff frequency of 400 Hz and SD of 3 or 5 dB. The mean
intensity of the stimulus was set to a value I0, which, if
presented as a constant stimulus, led to an intermediate firing
rate (about 150 Hz). The sound intensities thus cover the
steepest region of the neuron’s rate–intensity function so that
the neuron is most sensitive to amplitude modulations. Match-
ing the resulting firing-rate fluctuations as well as the ISI
variability therefore presents a demanding test for the model
framework.

Figure 7 shows responses of a receptor neuron that has been
stimulated with such a temporally modulated acoustic stimu-
lus. As for constant stimuli, we observe that variability is
anticorrelated with the firing rate. Episodes of fast firing
reflected in the high peaks in Fig. 7B come with low variability
(Fig. 7, E–G). For counting times of 10 ms, Fano factors as low
as 0.05 are found. Low firing rates, on the other hand, can lead
to more than 10-fold higher Fano factors for the same counting
time.

To compare the results for the time course of the firing rate
and the Fano factor to the recovery-function model, we need to
provide the model with a temporally modulated input q(t),
which is derived at every instant from the sound intensity I(t)
(see Fig. 2). As explained in detail in METHODS, this relation
between q and I is based on the relation between I and the firing
rate f (obtained from previous measurements with constant
stimuli; see Fig. 1) and between f and q (calculated from the
model). Drawing spikes one after the other according to the
rate given in Eq. 14, model spike trains were generated from
this input (Fig. 7D). As shown in Fig. 7B, the time-dependent
firing rates of the model (black lines) and experiment (gray
lines) closely coincide most of the time. This indicates that our
framework of stimulus encoding, although obtained from con-
stant-intensity episodes, is applicable to describe the responses
to AM stimuli.

The model also accounts for the observed spike-count vari-
ability as measured by the Fano factor. For each of the 4
different counting window lengths, the mean Fano factors of
the model (m) are very close to the experimental (e) mean Fano
factors (10 ms: m: 0.25, e: 0.27; 25 ms: m: 0.18, e: 0.18; 50 ms:
m: 0.16, e: 0.16; 100 ms: m: 0.15, e: 0.17; average over all
cells). Moreover, the temporal fluctuations of the Fano factors
are also closely met. Note that both model and measurement
variability are anticorrelated with the firing rate (Fig. 7, E–G).
We further assessed the quality of the Fano factor prediction by
computing the mean absolute deviation of the predicted from
the measured Fano factors, scaled by the error of the experi-

FIG. 6. Experimental and model results for responses to constant stimuli. A:
CV values predicted for n � 14 cells are plotted against the experimentally
measured values. Each cell was stimulated with 5 to 24 intensities covering the
entire dynamic range of the neurons. B: distributions of the parameters of the
recovery function for n � 14 cells: absolute recovery period �a (left panel),
steepness parameter 	 (middle panel), and relative recovery period �r (right
panel).
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mental Fano factor (see METHODS). The resulting relative devi-
ations of the model predictions are near unity (mean scaled
prediction error for 10-ms windows: 1.7; 25 ms: 1.3; 50 ms:
1.2; 100 ms: 1.3; average over all cells), which shows that the
model deviations are of the same order of magnitude as the
experimental errors of the Fano factors. Discrepancies between

the measured and predicted Fano factors often coincide with
mismatches between the respective firing rates (see Fig. 7B).
This is most obvious for small counting times (Fig. 7E); the
Fano factor is overestimated when the firing rate is underesti-
mated, and vice versa. The population data (Fig. 8) also show
that the predicted Fano factors satisfactorily match the mea-
sured Fano factors. This is true for short as well as long
counting windows.

When model spike trains are compared with measured
spike trains, it is notable that for sharp, high peaks in the
AM of the stimulus, the model tends to exhibit greater
spike-timing precision than the investigated receptor neu-
rons (see Fig. 7D, e.g., at 420 ms). To quantify this, we used
the correlation-based measure of spike-timing reliability by
Schreiber et al. (2003). Filter widths of 0.5–3 ms were used

FIG. 7. Responses to time-varying stimuli: experimental and model results
for a sample cell. A: acoustic stimulus; the envelope is an instance of Gaussian
white noise with 400-Hz cutoff frequency, 36-dB SPL mean intensity, and
3-dB SD. Carrier frequency was 4 kHz. B: time course of the firing rate
determined with a 10-ms sliding window. The thick gray line depicts the
experimentally measured firing rate; the thin black line denotes the firing rate
of the model. C: Raster plot of experimental spikes in response to 30 stimulus
presentations. D: raster plot of 30 spike trains generated from the model. E:
Fano factors for 10-ms counting windows centered on time t. Predicted Fano
factors (black line) agree well with the experimentally determined Fano factors
(thick gray line). Both are anticorrelated with the firing rate shown in B. F–G:
same as in E for counting windows with a length of (F) 25 ms and (G) 50 ms.

FIG. 8. Comparison of the measured (Fexp) and predicted (Fmodel) Fano
factors for all cells and all counting window sizes. Dashed straight lines
illustrate the identity Fmodel � Fexp. Gray-level scale represents the counts per
bin divided by the total number of counts. The inserted histogram depicts the
distribution of differences between Fmodel and Fexp. Counting windows are 10
ms (A), 25 ms (B), 50 ms (C), and 100 ms (D). Apart from slight asymmetries,
no systematic differences between the predictions and the experimental data
are observed.
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to quantify the reliability of spike timing with different
temporal resolutions (see METHODS). The results for all cells
are shown in Fig. 9. On the shortest timescales of 0.5 and 1
ms, the spike timing of model spike trains is greater than
that of the experimental spike trains. Only for 0.5-ms filter
width, however, is the difference larger than the SE. For all
other timescales, the reliability values are in close agree-
ment. The deviation on the shortest timescales could be
explained by additional jitter in the experimental spike
trains. We recorded from the axon, so that some spike jitter
might be added on the way from the spike initiation zone
to the recording site, especially because the discrepancies
with the model appear on the submillisecond scale. This
type of jitter is not captured by our model of spike gener-
ation.

Reduced model variants fail to capture the observed
spike-train variability

To evaluate the importance of the recovery functions within
the model framework, we compared it with 2 simpler, reduced
model variants that are widely used in the analysis of spike-
train data: rate-modulated Poisson processes without and with
(absolute) refractory period. The comparison was quantified
for data from a sample cell. The alternative models were tuned
to this cell using the same procedures as those for the full
model. The absolute recovery period was estimated as the
shortest experimental ISI encountered during an experiment,
and the input relations q(I) were determined by matching mean
firing rates as described in METHODS. As expected (Gabbiani
and Koch 1998; Rieke et al. 1997), Fano factors obtained from
the rate-modulated Poisson process fluctuate around unity
(mean Fano factor for 10-ms counting windows: 1.0; mean
deviation relative to the experimental error: 16.8; see also Fig.
10A). Deviations from the theoretical value of unity observed
in the temporal fluctuations of the Fano factor are explained by
the limited number of stimulus presentations. In contrast to
this, spike counts for the investigated receptor neurons display
far more precision (mean Fano factor for 10-ms counting
windows: 0.33).

Combining the Poisson process with a fixed refractory pe-
riod to account for absolute refractoriness improves the result.
The variability exhibited by this second model is closer to the
measured values (mean Fano factor, 10 ms: 0.63; mean devi-
ation relative to experimental error 7.1; see also Fig. 10B).
However, the estimated spike-train variability is still system-
atically too high. This shortcoming is mirrored by errors in the
ISI distribution. Only the complete recovery-function model
predicts the correct amount of variability (mean Fano factor, 10
ms: 0.35; mean deviation relative to experimental error: 1.3)
and the true shape of the ISI distribution (Fig. 10C). Thus not
only absolute but also relative refractoriness is required to
understand the variability and reliability of the measured spike
trains.

D I S C U S S I O N

Stochastic models of spike generation based on recovery
functions have been successfully applied to sensory neurons

FIG. 9. Spike-timing reliability of experimental (gray) and model (black)
spike trains, averaged over 6 cells (error bars denote �1SE). Using the
correlation-based measure of Schreiber et al. (2003), filter widths of 0.5 to 3 ms
were used to quantify spike-timing reliability on different timescales. On the
shortest timescales of 0.5 and 1 ms, spike timing of the model spike trains is
more reliable than that of the experimental spike trains. For the longer
timescales, experimental and model spike-timing reliability are in close agree-
ment.

FIG. 10. Comparison of the model performance with 2 widely used alter-
native models. A: rate-modulated Poisson process without refractoriness. Left
panel: time course of the observed (thick gray line) and the predicted (thin
black line) Fano factors. Middle panel: predicted Fano factors are plotted
against the observed ones. Right panel: ISI distributions of the recording (gray)
and the Poisson process (black). As demonstrated by these data, the Poisson
process without refractoriness fails to predict the correct amount of variability.
B: Poisson process with a fixed refractory period. Compared with A, the
predictions are improved but the variability is still systematically overesti-
mated. C: renewal model with absolute and relative refractory period. As in B,
the absolute refractory period was chosen as the shortest ISI of the recorded
neuron. Theoretical and observed Fano factors now match closely, and the ISI
distribution is predicted with high accuracy. Experimental results are from the
same cell as in Fig. 6. All Fano factors were calculated for a 10-ms window
over 60 trials.
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(e.g., see Gaumond et al. 1982; Gray 1967; Johnson and Swami
1983). Recent examples include studies about the responses of
retinal ganglion cells to random flicker (Berry and Meister
1998) and responses of retinal ganglion cells, LGN neurons,
and V1 neurons to moving gratings (Kara et al. 2000). In these
investigations recovery functions were estimated using ISI
distributions from dynamic responses to time-varying stimuli,
and the model stimulus strength q(t) was inferred from the
measured spike trains.

As shown by our data, responses of receptor neurons may
allow an even simpler framework with a clear separation
between external stimulus and stimulus-independent cell dy-
namics (see also Brenner et al. 2002; Johnson 1996). For the
investigated auditory receptors, the cell dynamics are captured
by a renewal process under constant stimulation so that each
neuron can be characterized by one unique recovery function
w(t 	 tlast). This minimal description provides accurate pre-
dictions for ISI distributions caused by input intensities over
the entire range of firing-rate responses. To cover responses to
dynamic stimuli, the renewal process is driven by a time-
dependent effective stimulus strength q(t). The model captures
the spike-count variability and salient features of the fine
temporal structure in response to dynamic stimuli, although the
recovery functions were always calculated from ISI distribu-
tions obtained under constant stimulation.

In the present case, application of the model was facilitated
by the fact that responses from primary sensory neurons were
analyzed. This allowed us to calculate the effective stimulus
strength q(t) directly from the applied input and to determine
the recovery functions from responses to constant stimuli. For
higher-order neurons, complications arising from the dynamics
of intermediate processing steps and potential feedback loops
might make it impossible to fully separate internal and external
contributions to the response dynamics and thus limit the
present framework. However, the model could still be applied
to individual modules within the sensory processing network
that are then appropriately combined to describe the final
input–output relation. Benefits and drawbacks of such mech-
anistic but multicomponent frameworks—as opposed to phe-
nomenological one-step models such as those proposed by
Berry and Meister (1998) or Kara et al. (2000)—will depend
on the specific system under study.

Neural integration times have been neglected in the present
model as well as in many previous approaches. Instead the
model is based on an instantaneous relationship between the
intensity of the acoustic stimulus I and the effective stimulus
strength q so that q(t) � q[I(t)]. This reduction is justified by
the fact that the integration time of the receptor neurons is on
the timescale of about 1 ms (Gollisch and Herz 2005; Prinz and
Ronacher 2002), a timescale shorter than the minimal observed
ISI. This integration time is also shorter than fluctuations
present in the stimuli used in this study. Stimulus integration
could, however, be included in a straightforward way by
describing the stimulus strength through a functional q(t) �
q[I(t), t] that takes the recent history of the stimulus into
account.

We did not observe differences for the parameters of the
recovery function for the different receptor cell types, although
we cannot completely rule out the possibility that type III and
type IV cells make an exception because too few cells of these
types were recorded. The 4 different types of locust auditory

receptor neurons differ in their attachment site to the tympa-
num (Gray 1960), and their characteristic frequencies (Römer
1976), but not in their cytoanatomy (Gray 1960). Moreover,
the frequency preference of a receptor stems from the reso-
nance of the tympanic membrane at the attachment site (Mich-
elsen 1971). This suggests that the different response classes of
receptors are formed by neurons of a uniform electrophysio-
logical type. This would lead to the observed homogeneous
distribution of the recovery-function parameters over all 4
receptor-cell classes.

For testing the model’s validity in response to dynamic
stimuli, we focused on a restricted set of artificial stimuli.
These contained substantial power at relatively high frequen-
cies of the sound-pressure envelope because the cutoff fre-
quency was set to 400 Hz. Stimuli with lower cutoff frequency,
which are also encoded with high fidelity (Machens et al.
2001), and grasshopper communication signals were excluded,
because such stimuli cause strong fluctuations in the adaptation
level of locust auditory receptor neurons (Benda 2002). We
rather used stimuli that fluctuate on a timescale that is much
faster than the relevant adaptation time constants, which are
typically around 70 ms (Benda 2002). These stimuli lead to an
approximately constant level of adaptation after the initial
transient at stimulus onset, allowing us to use a simplified
description of stimulus encoding without adaptation. In a
future extension of the model, however, one could easily
include a detailed adaptation model that captures cell-intrinsic
currents (Benda and Herz 2003) and dynamics of the mechan-
ical stimulus coupling (Gollisch and Herz 2004). This would
enhance the predictive power for stimuli varying on multiple
timescales, such as natural grasshopper communication sig-
nals, but substantially longer recording times would be re-
quired to calibrate all model parameters. The degree of realism
of the presented framework could be even further enhanced by
incorporating results from biophysical investigations of the
spectral (Gollisch et al. 2002) and temporal integration prop-
erties (Gollisch and Herz 2005). Altogether, this might yield a
biophysically motivated and simple, yet highly accurate de-
scription of stimulus encoding for this insect auditory model
system.

By comparing the recovery model to the reduced variants,
we have demonstrated that both an absolute and a relative
refractory period are needed to reproduce the low variance of
the spike count observed experimentally. Low spike-count
variances facilitate signal detection, indicating that the refrac-
toriness of the investigated receptor neurons might be helpful
for discriminating signals, such as grasshopper calling songs
from different males. For this task, the temporal structure of the
spike trains appears to be of particular importance. It has been
shown that the spike trains of locust auditory receptors contain
sufficient information for discriminating calling songs on short
timescales of a few milliseconds (Machens et al. 2003). The
observed renewal-process characteristics of the receptor neu-
rons could be beneficial for this discrimination task because
they enhance the coding possibilities on such short timescales.
The length of an ISI generated by a renewal process depends
only on the stimulus, and not on the preceding ISI, thus
maximizing the number of potential output signals in the neural
code. This lack of memory would be especially suited for the
detection of single, fast-signal elements, such as syllables or
gaps, which form parts of the communication signals of grass-
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hoppers. On the other hand, it has been demonstrated for some
systems that intrinsic ISI correlations (nonrenewal behavior)
can enhance information transmission (Chacron et al. 2001).
Whether a renewal or a nonrenewal process is more suitable,
however, might depend on the specific task that is to be solved
by the neural system.

What are the implications of our findings with respect to the
neural code used by the investigated receptor cells? We have
demonstrated for these cells that the mean response and its
fluctuations can be predicted with a model that contains a
stimulus encoder based on firing rates and a simple stochastic
spike generator. Because there are about 60–80 receptor neu-
rons per ear, which can be subdivided into 4 classes with
different frequency-tuning characteristics (Römer 1976), pop-
ulation averages could be used to achieve reliable mean re-
sponses despite significant spike-time variability on the single-
cell level. On the other hand, it has been shown that even single
auditory receptor neurons contain sufficient information to
discriminate conspecific communication signals, with single
spikes carrying significant amounts of information at high
temporal resolution (Machens et al. 2003). Moreover, some
stimulus classes, especially those with a large modulation
depth, are encoded much better than others (Machens et al.
2001).

This fact matches our finding that the variability of both ISIs
and spike count strongly depends on the stimulus. For both
constant and dynamic stimuli the variability could be modeled
using the same stochastic process, which indicates that there is
no principal difference between the responses to constant or
strongly time varying stimuli. Differences in the encoding
quality may therefore simply arise from the specific usage of
the neuron’s dynamic range and encoding capacity by the
particular stimulus. Based on the presented framework, the
interplay between specific stimulus features and the neural
response dynamics could now be investigated in detail and
allow a tight connection between information theory and non-
linear dynamics.
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