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SUMMARY

Advances in technology are opening new windows
on the structural connectivity and functional dy-
namics of brain circuits. Quantitative frameworks
are needed that integrate these data from anatomy
and physiology. Here, we present a modeling
approach that creates such a link. The goal is to infer
the structure of a neural circuit from sparse neural
recordings, using partial knowledge of its anatomy
as a regularizing constraint. We recorded visual re-
sponses from the output neurons of the retina, the
ganglion cells. We then generated a systematic
sequence of circuit models that represents retinal
neurons and connections and fitted them to the
experimental data. The optimal models faithfully
recapitulated the ganglion cell outputs. More impor-
tantly, they made predictions about dynamics and
connectivity among unobserved neurons internal to
the circuit, and these were subsequently confirmed
by experiment. This circuit inference framework
promises to facilitate the integration and under-
standing of big data in neuroscience.

INTRODUCTION

Much of neuroscience seeks to explain brain function in terms of

the dynamics in circuits of nerve cells. New parallelized technol-

ogies are greatly accelerating the pace of measurements in

this field. The structure of brain circuits, namely the shapes of

neurons and their connections, can be determined from high-

throughput, three-dimensional light and electron microscopy

(EM) [1]. The dynamics of signals in those neurons are revealed

by a host of parallel recording methods that use optical or elec-

trical readout simultaneously from many hundreds of neurons

[2, 3]. What is urgently needed is a modeling framework that

can integrate these data, provide an explanatory link between

structural connectivity and neural dynamics, and finally reveal

the overall function of the system.

Neural circuit diagrams (Figures 1 and S1) are a powerful

abstraction tool, because they serve as an explanatory link be-
Curre
tween brain anatomy and physiology [4–7]. In the conventional

mode, one proceeds from structure to function: anatomical

studies reveal how neurons are connected. From this, one con-

structs a circuit diagram that predicts the signal flow through the

circuit. Those predictions are then tested by physiological exper-

iments. It is worth considering whether this traditional process

can be generalized in a way that meets more realistic needs of

neuroscience. Typically, one has only sparse and incomplete

knowledge of the circuit’s structure. For example, even the

best EM images cannot reveal the strength of every synapse.

Similarly, the functional data are limited, for example, to neural

recordings from those cells that are most accessible. A circuit

model that satisfies both these datasets can serve as the glue

needed for their integration. If successful, such a model can

make new predictions both for neural connectivity and for neural

function that serve to motivate the next round of experiments.

Here, we present an approach for inference of neural circuits

from sparse physiological recordings. To test the feasibility of

this scheme, we worked with a neural system about which a

good deal of ground truth is known already: the vertebrate retina

[6, 8]. In physiological experiments, we stimulated the input layer

of photoreceptor cells with complex visual stimuli and recorded

theoutput signals from retinal ganglion cellswith amulti-electrode

array. We then devised a systematic series of models for the

intervening circuitry, yielding a best-fit circuit diagram for each

ganglion cell type. This method inferred correctly several well-es-

tablished features of retinal circuitry. It also revealed some unex-

pected aspects, such as the existence of two different feedback

systems. Finally, a critical test of the approach is whether it can

predict new circuit structures that were not directly observed.

Indeed, the modeling made specific predictions for the response

properties and connectivity of bipolar cells, and we subsequently

confirmed these quantitatively by direct physiological recordings.

RESULTS

We recorded the spike trains of �200 ganglion cells in the iso-

lated salamander retina while stimulating the photoreceptor

layer with a spatially and temporally rich display: an array of ver-

tical bars that flicker randomly and independently at 60 Hz (Fig-

ure S2A). This stimulus drives a wide range of spatiotemporal

computations in the retina; at the same time, its restriction to

one spatial dimension limits the complexity of analysis and
nt Biology 27, 189–198, January 23, 2017 ª 2016 Elsevier Ltd. 189

mailto:asari@embl.it
mailto:meister@caltech.edu
http://dx.doi.org/10.1016/j.cub.2016.11.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2016.11.040&domain=pdf


7
1

25

7

42

25

108
...

output

Σ

stimulus

Σ

output

stimulus

B C

D

E

F G

...

stimulus

output

Σ

LN model LNSN model

LNSNF's GCM

LNFSNF's BCM

LNFDSNF model Parameters

BBBB

P

H

G

A

P

P P P P
P

A Retinal circuit

BCM

GCM

Σ

ACM

Figure 1. A Progression of Circuit Models

Constrained by Retinal Anatomy

(A)Schematicof thecircuit upstreamofaganglioncell

in the vertebrate retina. Photoreceptors (P) transduce

the visual stimulus into electrical signals that propa-

gate through bipolar cells (B) to the ganglion cell (G).

At both synaptic stages, one finds both convergence

and divergence, as well as lateral signal flow carried

by horizontal (H) and amacrine (A) cells. The bipolar

cell and its upstream circuitry are modeled by a

spatiotemporal filter, a nonlinearity, and feedback

(bipolar cell module [BCM]; blue). The amacrine cell

introduces a delay in lateral propagation (amacrine

cell module [ACM]; red). The ganglion cell was

modeled by a weighted summation, another nonlin-

earity, and a second feedback function (ganglion cell

module [GCM]; green). Drawings after Polyak, 1941.

(B) LN model. A different temporal filter is applied to

the history of each bar in the stimulus. The outputs

of all of these filters are summed over space. The

resulting signal is passed through an instantaneous

nonlinearity.

(C) LNSN model. The stimulus is first processed

by partially overlapping, identical BCMs, each of

which consists of its own spatiotemporal filter and

nonlinearity. Their outputs are weighted and sum-

med by the GCM, which then applies another

instantaneous nonlinearity to give the model’s

output. For display purpose, the BCMs are shown

here to span only three stimulus bars, but they

spanned seven bars in the computations.

(D) LNSNF model. This is identical to the previous

one, except that the GCM (depicted here) has an

additional feedback loop around its nonlinearity.

(E) LNFSNF model. This is identical to the previous one, except that the BCMs (one of which is depicted here) have an additional feedback loop around their

nonlinearities. This new feedback function is the same for all BCMs.

(F) LNFDSNFmodel. This is identical to the previous one, except that there is a delay inserted between each BCM and the GCM. These delays are allowed to vary

independently for each BCM.

(G) A count of the free parameters in the LNFDSNF model, color coded as in the model diagram. Except for the total (108), the numbers here also apply to the

LNSN, LNSNF, and LNFSNF models. The LN model has 186 free parameters in the linear filter (31 spatial positions, each with six-parameter temporal filter as in

Equations S3–S5) and one in the nonlinearity. See also Figures S1 and S3.
modeling. Repeated presentations of the same flicker sequence

reliably evoked very similar spike trains (Figures 2A, 2B, and

S2B), as expected from previous studies [9–11]. This suggests

that essential features of the retina’s light response can be

captured by a deterministic model of the ganglion cell and its

input circuitry [4]. In addition, we presented a long non-repeating

flicker sequence to explore as many spatiotemporal patterns as

possible. Thirty ganglion cells were selected for quantitative

modeling based on the stability of their responses throughout

the extended recording period.

Modeling Approach
We focused on predicting the firing rate of ganglion cells (GCs),

namely the expected number of spikes fired in any given 1/60 s

interval. Mathematical models were constructed that take the

time course of the flicker stimulus as input and produce a time

course of the firing rate at the output. The parameters of the

model were optimized to fit the long stretch of non-repeating

flicker (�80% of the data; the ‘‘training set’’). Specifically, we

maximized the fraction of variance in the firing rate that themodel

explains (Equation S10) [11]. Then the model performance was

evaluated on the remaining data examined with the repeated
190 Current Biology 27, 189–198, January 23, 2017
flicker (�20%; the ‘‘test set’’). This performance metric was

tracked across successive changes in the model structure.

As a formalism, we chose so-called cascade models [4, 5].

These are networks of simple elements that involve either linear

filtering (convolution in space and time) or a static nonlinear

transform. They map naturally onto neural circuitry (Figure 1)

and can be adjusted from a coarse-grained version (every

neuron is an element) to arbitrarily fine-grained ones (multi-

compartment models of every neuron and synapse).

As a reference point, we chose the so-called LN model, con-

sisting of a single linear-nonlinear cascade (Figure 1B). This

has been very popular in sensory neuroscience [12–14] and

serves as a common starting point for fitting neural responses.

This model was able to approximate the GC output (Figures

2A, 2B, and S2B), though with a wide range of performance for

different neurons (Figures 2C and 2D). Even with optimized pa-

rameters, however, the LN model predicts firing at times when

it should not, thus making the peaks of firing events wider and

flatter than observed (Figures 2A, 2B, and S2B).

Guided by knowledge of retinal anatomy, we then created a

sequence of four cascade models by systematically adding

components to the circuits (Figures 1C–1F). Each model derives
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Figure 2. The High Precision of Retinal Re-

sponses Allows a Sensitive Discrimination

of Circuit Models

(A and B) Response of a sample ganglion cell to

repetitions of the stimulus (A; zoom-in to one of the

firing epoch in B). (Top) Each row in the raster de-

notes spikes from a single stimulus repeat. (Bottom)

The time course of the firing rate (black; SE in gray)

and that of the output of the models fitted to the

same cell (blue, LN model; red, LNFDSNF model)

are shown. See also Figure S2.

(C and D) A performance summary of all models

reveals the most effective circuit features. The

example cell in (A) and (B) is highlighted in orange.

(C) Explained variance (EV) of individual cells (gray

line for each cell) across models (distinct colors) is

shown. LN, 0.25 ± 0.15; LNSN, 0.29 ± 0.15; LNSNF,

0.38 ± 0.15; LNFSNF, 0.40 ± 0.18; LNFDSNF, 0.42 ±

0.16; median (black horizontal bar) ± interquartile

range. (D) Variance explained by eachmodel plotted

as a ratio to the variance explained by the LN model

is shown. Each point along the horizontal axis cor-

responds to a different ganglion cell, and they are

sorted based on their visual response type and or-

dered by increasing variance ratio under the most

complex model. Note the substantial jump in per-

formance from introducing a nonlinearity at the

bipolar cell output (blue to indigo) and from

introducing feedback (indigo to green). See also

Figure S7.
its name from the cascade of components. The last one is the

linear-nonlinear-feedback-delayed-sum-nonlinear-feedback

(LNFDSNF) model (Figure 1F). For eachmodel class, the compo-

nents of the circuit were parameterized and the fitting algorithm

found the optimal parameter values for each GC (Figure S3).

Each model circuit is more general than the previous one and

significantly outperformed it in predicting the visual responses

of certain GCs (p < 0.001 for every step; sign test; Figures 2C

and 2D). The improvement, however, is not simply due to over-

fitting after addition of more free parameters (Figure 1G). In

fact, the LN model has the most free parameters among the

models we tested. We also used separate training and testing

data and achieved equivalent values in the explained variance.

This implies that each model truly captures additional aspects

of the computations carried out by the retina, and their biological

realism will be examined for each case.

LN to LNSN: Multiple Bipolar Cell Modules
Each GC generally pools information from many bipolar cells

(BCs) [8]. Previous studies using intracellular recordings have

shown that a single BC and its upstream circuitry of photorecep-

tors and horizontal cells can be well described as a single spatio-

temporal linear filter, at least for a moderate dynamic range of

stimulus intensity [15]. In addition, transmission at the synapse

from BC to GC introduces a nonlinearity, at least for certain BC

types [15].

All this suggests a linear-nonlinear-sum-nonlinear (LNSN)

model (Figure 1C): this consists of several ‘‘bipolar cell-like’’

modules, each of which is a miniature LN model in itself. Their
output is weighted and summed (S), followed by another

nonlinear (N) function to produce the GC firing rate [16]. To avoid

an excess of free parameters, we took the bipolar cell modules

(BCMs) to all be identical but placed at different spatial locations

in the retina, at increments of one stimulus bar width (66 mm). The

BCM outputs are then weighted, pooled together, and rectified

by the ganglion cell module (GCM). The second rectification is

necessary because some of the pooling weights may be nega-

tive, whereas the firing rate of the GC must be positive. In addi-

tion, the GCM nonlinearity can express thresholds and rectifica-

tion in the relationship between synaptic inputs and firing rates.

The fitting algorithm optimized the spatiotemporal filter and

nonlinearity of the BCM, as well as the pooling weights of the

GCM and its nonlinearity. Owing to the internal nonlinearity in

the circuitmodel, the LNSNmodel achieved a better performance

in predicting the GC visual responses than the LN model (24% ±

5% increase in the explained variance; mean ± SE; Figure 2D).

Note that this improvement in performance came despite a sub-

stantial reduction in the number of free parameters (from 187 to

68). Imposing a structure guided by known anatomy of the

retina—the repeating identical subunits from bipolar cells—pro-

vides a constraint that regularizes the optimization process and

circumvents the ‘‘curse of dimensionality’’ in model fitting. At the

same time, this circuit structure seems to be closer to ground

truth, as it provides a better match to the system’s function.

Beside this improvement in the model’s performance, several

results were robust across all GCs (Figures 3 and 4). First, the

spatiotemporal filter of the BCM (Figure 3A) matched existing

direct measurements of salamander BC receptive fields in the
Current Biology 27, 189–198, January 23, 2017 191
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Figure 3. The LNSN Model Predicts Small

Subunits of the Receptive Field

Spatiotemporal filters for the BCM subunits (A) and

the GCM pooling functions (B) derived from fits

using the LNSN model. Results for two represen-

tative GCs are shown (left, OFF type; right, ON type),

whose spatiotemporal receptive fields are shown in

(C). All panels have the same spatial scale. See also

Figures S5A and S5B.
overall characteristics. In the spatial domain, these BCM filters

attained a ‘‘Mexican hat’’ shape—with large values in the center

and small opposite polarity values in the surround—and had a

much narrower range (106 ± 32 mm; median zero-crossing

radius ± interquartile range) than the measured GC receptive

fields (180 ± 64 mm; p < 0.001; sign test; Figure 3C). In the time

domain, the kinetics of the OFF-type BCMs that depolarize at

light offset were faster than the ON-type ones that depolarize

at light onset (Figure 3A). These characteristics are all consistent

with the experimental data [15, 17, 18].

Second, the pooling weights of the GCM also attained a cen-

ter-surround structure but at a considerably larger scale (Fig-

ure 3B). The spatial extent of the GCM center (194 ± 39 mm; me-

dian zero-crossing radius ± interquartile range) was significantly

larger than that of the BCM center (p < 0.001; sign test) and com-

parable to that of the GC dendritic field in the salamander retina

[15, 19, 20]. The model thus inferred correctly a distinct differ-

ence in the spatial pooling properties between circuits in the

outer retina (BCM component) and the inner retina (GCM).

Finally, the BCM output nonlinearities fell into three categories

(Figure 4): linear, monotonic-nonlinear, and U-shaped. Whereas

the linear type was found only in the ON GCs (Figure 4A), the

nonlinear types were found more frequently in the OFF GCs (Fig-

ures 4B and 4C). The GCs with the U-shaped BCM nonlinearity

most likely received excitation from both ON and OFF BCs and

indeed responded to a transition of the stimulus intensity in either

direction (data not shown, but see, e.g., [21, 22]). Nevertheless,

the BCM outputs were always highly dominated by one polarity

(OFF inputs in most cases) over the other, with about a 10-fold

difference in the magnitude (Figure 4C).

For most ganglion cells, the BCM nonlinearity had an ‘‘expan-

sive’’ shape with upward curvature [23]. To reduce the number of
192 Current Biology 27, 189–198, January 23, 2017
free parameters, we checked whether this

shape could be replaced by a simple half-

wave rectifier in subsequent modeling

steps. Indeed, this simplification hardly

affected the fit (by only 0.01 ± 0.02 in the

explained variance; mean ± SD), suggest-

ing that the precise shape of the nonline-

arity is not essential for the responses to

this broad stimulus set.

LNSN to LNSNF: Ganglion Cell
Output Feedback
The models presented so far have an

instantaneous nonlinearity at the GCM

output. Spike generation, however, in-

volves dynamic processes, such as a
slow inactivation of the sodium current in GCs [24]: an increase

in firing inactivates the current, which in turn leads to reduced

spiking. The inactivation can last for hundreds of milliseconds

and is partly responsible for contrast adaptation in retinal re-

sponses [24]. In general, any non-instantaneous process that

depends on the output cannot be modeled by the LNSN model.

A feedback loop around the GCM nonlinearity, however, can

emulate these effects [10, 11]. Following the rules of cascade

modeling, we implemented the feedback as a linear filter, leading

to the linear-nonlinear-sum-nonlinear-feedback (LNSNF) model

(Figure 1D).

The optimized feedback filter generally consisted of a short

positive lobe followed by a longer negative lobe (Figure 5A).

The positive lobe was essentially instantaneous, limited to just

one stimulus frame (17 ms). The negative lobe could be fit by

an exponential with decay time 93 ± 102ms (median ± interquar-

tile range). With the inclusion of the feedback function, the

LNSNF model produced greatly improved fits to the GC visual

responses, especially when there is a strong negative feedback

(Figure 5B). For most GCs, this was the most beneficial step in

the series of the circuit models considered (29% ± 2% increase

in the explained variance from the LNSN model; mean ± SE;

Figure 2D).

How does the feedback kernel exert such large effects? The

short positive lobe drives the firing rate high as soon as the

threshold for firing is crossed, which makes for a sharp onset

of firing bursts. Then the later negative lobe eventually sup-

presses the response following a period of firing—as in an

after-hyperpolarization [25]—with two important effects (Fig-

ure S4): first, the early part of the negative lobe (�100 ms) serves

to terminate the bursts of firing at the proper duration (Figures

S4C and S4D). Second, the later tail prevents the model from
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Figure 4. The LNSN Model Predicts a Diver-

sity of Transfer Functions at the Bipolar Cell

Synapse

The internal nonlinearity of the BCMmodule inferred

by the LNSN circuit model for different ganglion

cells. The horizontal axis measures the input to that

nonlinearity in units of its SDs; the vertical axis

shows the output of the functions. The nonlinearities

are classified into three types: linear (A), monotonic

nonlinear (B), and U-shaped (C). The BCM outputs

are much more rectified for OFF GCs (blue) than

for ON GCs (red; p = 0.005; c2 test). See also

Figure S5C.
firing for some time after a burst and thus suppresses false re-

sponses that would otherwise appear (Figures S4E and S4F).

As a result, the feedback allows the response peaks in the GC

output to be taller and sharper, because parameters that control

the overall gain are free to grow without incurring a penalty from

the appearance of superfluous firing events.

LNSNF to LNFSNF: Bipolar Cell Synapse Feedback
Another site of adaptation in the retina is the BC synapse. The

depletion of glutamate vesicles and an activity-dependent

reduction in the efficiency of their exocytosis depress the syn-

apse on the timescale of tens to hundreds of milliseconds [26].

A second feedback loop, this time around the BCM nonlinearity,

can be used to model this effect. This introduces a BCM

feedback and results in the linear-nonlinear-feedback-sum-

nonlinear-feedback (LNFSNF) model (Figure 1E). This extension

led to small but robust improvements in the fit, primarily for

the OFF GCs (3% ± 1% increase in the explained variance;

mean ± SE; Figure 2D).

The two feedback functions for the BCM and GCM often took

on different shapes (Figure 5A). For some GCs, the positive lobe

was concentrated in one feedback stage and the negative lobe in

the other. These differences were significant: swapping the two

functions degraded the fit, and a subsequent parameter optimi-

zation led to a recovery of the original shapes (Figure S5D). For
Current
different GCs, the feedback function was

dominated either by the component

around the GCM or around the BCM (Fig-

ure 5A), and cells in the latter category

benefited most from introducing a sepa-

rate BCM feedback to the circuit model.

This distinction is prominent especially

for the negative portion of the feedback

filter (Figure 5C). In summary, feedback

plays an important role overall in modeling

the responses correctly, yet different GCs

vary in the relative importance of the bipo-

lar and ganglion cell feedback stages.

LNFSNF to LNFDSNF: Amacrine Cell
Delay
Previous studies suggest that the negative

surround of the GCM-pooling function

(Figure 3B) arises via inhibition from ama-

crine cells that carry the information from
more distant BCs [8]. Because processing in the intermediary

amacrine cells requires extra time, the input to the GCM from

BCMs in the distant surround should be delayed with respect

to the input from central BCMs. In fact, one can observe these

delays directly in the spatiotemporal receptive fields (Figure 3C)

and the filters of the LN model (Figure S3, top row). This moti-

vated another development of the circuit model: an independent

delay parameter for each BCM prior to their pooling. This time

delay can be represented by a simple linear filter, and thus, the

model still conforms to the basic cascade structure. The result-

ing circuit was called the LNFDSNF model (Figure 1F).

Fitting the LNFDSNFmodel yielded, in particular, the delays as

a function of spatial position (Figures 6A and 6B). Overlaying this

on the simultaneously fitted pooling weights clearly shows that

the surround is delayed relative to the center (Figure 6A). This

delay ranged from 6 to 66 ms (26 ± 12 ms; median ± interquartile

range; Figure 6B), where the GCs with virtually no delay had

a very weak surround. The delay did not depend on distance

from the center, suggesting that it derives from integration in

the additional interneuron, not from conduction times along

amacrine and ganglion cell processes.

The delays affect the model’s predicted receptive fields of

GCs,making themmore similar to the experimental data (Figures

6C and 6D). The spike-triggered average analysis, which pro-

vides a linear estimate of a neuron’s receptive field [12], shows
Biology 27, 189–198, January 23, 2017 193
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(B and C) The improvement from models that allow feedback is systematically related to the magnitude of the negative feedback around GCM in the LNSNF

model and that around BCM in the LNFSNF model (r, correlation coefficient; p, p value for testing hypothesis of no correlation; regression line shown in case of
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and LNSNFmodels (C) as a function of the peak negative feedback strength around BCM or GCM (colors as in A). The representative cells in (A) are highlighted in

orange. See also Figures S4 and S5D.
that the surround of the GC receptive field generally lags behind

the center (Figure 6C). This is accurately reproduced by the

LNFDSNF model, but not by the LNFSNF model (Figure 6D).

Even though the LNFSNF model has a delayed surround in its

BCMs (Figure S3), this surround is not spatially large enough to

account for what is observed in the GC receptive fields. In

contrast, the LNFDSNF model has a new way of delaying the

receptive field surround independently of the other circuit ele-

ments. It can thus accommodate without trade-offs the delayed

receptive field surround and achieve a better performance (8% ±

2% increase in the explained variance; mean ± SE; Figure 2D).

Experimental Tests of the Models
An argument for designing response models with a cascade ar-

chitecture is that theymap naturally onto real biophysical circuits

of neurons. The ultimate test of this approach is whether the el-

ements inferred in the fitting process have actual biological

counterparts. To explore the biological realism of the models,

we next focused on two predictions about BC physiology

and subjected them to direct experimental tests. Specifically,

we measured the receptive and projective fields of real BCs

[27, 28] and compared them to their predicted counterparts:

the BCM filters and the GCM pooling functions, respectively.

These experiments were carried out by combining sharp elec-

trode recordings from BCs and multi-electrode array recordings

from GCs. To identify the projection patterns from BCs to

GCs, we intracellularly injected current into individual BCs while

recording the spiking responses of multiple GCs. This permitted
194 Current Biology 27, 189–198, January 23, 2017
the selection of GCswhose spiking activity was strongly affected

by the BC current injection (Figure S6A). To measure the recep-

tive fields of those BC-GC pairs simultaneously, we also re-

corded their visual responses to the flickering bar movie pre-

sented to the photoreceptors. In total, we mapped both the

receptive and projective fields in six BCs, and 14 BC-GC pairs

were selected for the model fitting because they showed strong

projections between the cells. This data selection was done

before fitting the models to avoid biasing the results.

BCM Filters versus BC Receptive Fields

Reverse-correlationmethodswere applied to bipolar cell record-

ings to obtain a linear estimate of the bipolar cell receptive field

(Figure 7A). This was compared to the BCM filter in a model that

fits ganglion cell recordings. We found that the prediction and

measurement matched well with each other despite the model’s

assumption that a GC receives signals from all identical BCs.

Specifically, the spatial characteristics of the BCM filters were

consistent with those of themeasured BC receptive fields, rather

than those of the GC receptive fields (Figures 7A, 7B, and S6B).

Moreover, the BCM filters obtained from GCs that receive pro-

jections from the same BCs resembled each other more than

those from GCs with projections from different BCs (p = 0.02;

ANOVA; Figure 7B). All this indicates that the BCMs of the circuit

model correspond well to the real biological BCs that provide

inputs to the target GC.

GCM Pooling Functions versus BC Projective Fields

Injecting current into a BC affects the firing of its downstream

GCs (Figure S6A). We quantified this effect by the projective



0

50

100

R
el

at
iv

e 
de

la
y

fro
m

 c
en

te
r (

m
s)

A OFF cell

Center

Surround

-0.5

0

0.5

1 P
ooling w

eights

ON cell

0.5 mm

LNFSNF

LNFDSNF

STA

C

Center

Surround

Ti
m

e 
(s

)

Space (mm)
-0.5 0 0.5

-0.4

-0.2

0

Filter strength
-1 0 1

0

20

40

60

S
TA

LN
FD

S
N

F

LN
FS

N
F

LN
S

N
F

LN
S

N

P
ea

k 
la

te
nc

y 
di

ffe
re

nc
e

[s
ur

ro
un

d 
- c

en
te

r] 
(m

s)
 

D

Relative delay from 
center to surround (ms)

0

5

10

N
um

be
r o

f c
el

ls

B

0 40 80

...

Σ

...

Σ

...

Σ

Figure 6. LNFDSNF: Time Delays from Ama-

crine Cell Processing Explain the Spatiotem-

poral Receptive Fields of Ganglion Cells

(A) Delay functions (black; relative to the center) and

the pooling functions (gray) for two representative

cells (left, OFF type; right, ON type). The delays are

longer in the surround (magenta; weighted average

by the pooling weights) than in the center (green),

and the transition occurs at the same spatial loca-

tion where the pooling function crosses zero.

(B) Population data histogram of the relative delays

from the center to the surround (median value in

magenta; p < 0.001; sign test). The cells in (A) are

highlighted in orange.

(C) Receptive fields (same cells as in A) calculated

from the data (STA, top) show the surround

(magenta, peak latency) lagging behind the center

(green). Receptive fields calculated from the

LNFDSNF model reproduce this feature (middle),

but those from the LNFSNF do not (bottom).

(D) The difference in the peak latency between the

center and the surround across different models.

Each gray line indicates a cell, and the cells in (C) are

highlighted in orange. The black horizontal bars

show themedian values, with significant differences

between the STA and those models without

delays (LNSN, LNSNF, and LNFSNFmodels; all with

p < 0.001; rank sum test). The difference in the

relative delay between the STA and the LNFDSNF

model is not significant (p > 0.9).
weight, defined as a normalized ratio (difference over sum as in

Equation S1) between the GC firing rates in response to BC de-

polarization and hyperpolarization, andmeasured its relationship

to the distance between the BC and GCs. The resulting projec-

tive field represents spatial characteristics of an information

flow that is ‘‘outward’’ from a BC onto multiple GCs. In contrast,

the GCM pooling function defined in our models refers to infor-

mation being pooled ‘‘inward’’ from multiple BCMs into a single

GCM. Strictly speaking, the measured projective field and the

predicted pooling function are thus different objects, yet we

found that these two spatial profiles are comparable. They

both had a center-surround structure, with positive (excitatory)

weights in the center and weaker negative (inhibitory) ones in

the surround (Figures 7C, 7D, and S6C). Together, the similarities

between the predicted and measured circuit properties suggest

that the cascade model presented here is a powerful tool for

inferring the inner details of a neural circuit from simulation and

fitting of its overall performance.

DISCUSSION

We set out to derive circuit models of the retina directly from

measurements of its input-output function (Figures 2A, 2B, and

S2). We considered network models in which the neurons and

their connections are explicitly represented. The cells and syn-

apses of the circuit diagram were converted to parametric math-

ematical expressions (Figures 1 and S1). Then, a high-dimen-

sional parameter search yielded the optimal neural circuit to

match the functional measurements (Figures 2C and 2D). The

main results of this circuit inference are as follows: (1) The
models can reliably distinguish the circuit functions of the inner

and the outer retina. Lateral convergence in the inner retina

acts over larger distances than in the outer retina (Figures 3

and 7), and distinct feedback functions are employed at the

two processing stages (Figure 5). (2) The models inferred

correctly that different types of retinal GCs have distinct circuit

architectures. Major differences involve the spatiotemporal

characteristics of BC receptive fields (Figure 3) and the degree

of rectification at the BC synapses (Figure 4). (3) The circuit

models are not merely mathematical abstractions but represent

biological reality (Figure 6). For example, circuit inference made

accurate predictions for the visual response properties of BCs

and their connectivity to GCs, as verified subsequently by direct

experimental measurements (Figure 7).

Modeling Strategy
Various strategies exist for modeling the input-output function of

a neural system [5]. On one end of the spectrum are abstract

mathematical techniques that map the stimulus (intensity as a

function of space, wavelength, and time) into the firing rate (a

function of time), for example, using a Volterra series [29, 30].

This has the attraction of mathematical completeness along

with theorems that govern the inference process for the model

parameters and its convergence properties. In practice, how-

ever, the structure of such abstract models does not fit naturally

to biological data. An accurate fit to neural response data often

requires many high-order kernels (Figure S7), whose values

cannot be estimated efficiently in reasonable experimental

time. Furthermore, the central objects of the model, the kernels,

do not relate in any natural way to the biological objects, the
Current Biology 27, 189–198, January 23, 2017 195
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Figure 7. Experimental Tests Confirm the

Circuit Structure Predicted by Modeling

(A) Predicted (top) and measured (middle) bipolar

cell receptive fields (BC RFs), with the corre-

sponding GC RF (bottom) obtained by a simulta-

neous BC-GC recording. Note that current injection

into this BC significantly affected the spiking activity

of this GC (Figure S6A). See also Figure S6B.

(B) Spatial characteristics of the receptive fields

across all BC-GC pairs with significant projections

(14 GCs, each receiving projections from one of six

BCs; the example in A is highlighted in orange). The

full width of the receptive field center at zero

crossing is significantly smaller in the predicted BC

RFs (left, 243 ± 50 mm; median ± interquartile range)

than in the measured GC RFs (right, 398 ± 57 mm;

p < 0.001; sign test). The difference between the

predicted and measured BC RFs (315 ± 68 mm) is

not significant (p > 0.1).

(C) The spatial profile of the pooling function of the

representative GC (top, with distance from the peak

in the horizontal axis) and that of the projective

weight of the simultaneously recorded BC (bottom,

with each dot representing the projection to a GC).

See also Figure S6C.

(D) Comparison between the pooling (197 ± 65 mm)

and projective weights (368 ± 178 mm; median ±

interquartile range of the zero-crossing radii at the

excitation-inhibition transition; p = 0.01; sign test).

Each gray line indicates the simultaneously re-

corded data (the example in C is highlighted in

orange).
neurons and synapses. It is thus difficult to draw further inspira-

tion for biological experiments from the response model.

On the other end of the spectrum, one finds models with

excessive realism: here, each neuron is represented with a

many-compartment biophysical simulation, governed by the

morphology of the cell, with many different membrane conduc-

tances, and coupled by synapses simulated at molecular detail

[31]. A selling point for such models is that they are exhaustive,

in that every conceivable molecular parameter can be given a

place in the model. But they are also exhausting, in that they

require inordinate computing effort to simulate anything. Most

of the parameters are unknown, and very few are directly observ-

able or under experimental control. Thus, the fitting process to

infer this vast number of parameters from data is often computa-

tionally intractable.

The modeling style chosen here falls in a golden middle (Fig-

ure 1). The neural circuit diagram incorporates biological detail

at a level that can actually be observed and manipulated exper-
196 Current Biology 27, 189–198, January 23, 2017
imentally: neurons; axons; synapses; and

dendrites. The signals coursing through

the model represent actual electrical sig-

nals in neurons. Individual neurons are rep-

resented by simple elements with linear

summation and a nonlinear output func-

tion. Cascade models of this type have

been in use for some time [32–34]. In gen-

eral, one assumes a certain cascade struc-

ture and then optimizes the set of parame-
ters that characterize the components. To this, our study adds

an additional search across different network structures. This

allows one to determine which plausible neural circuit best ex-

plains the functional data.

Implications for Retinal Circuits
A good model in biological sciences should give not only a faith-

ful description of a phenomenon but also some insights into the

underlying mechanisms along with experimentally testable pre-

dictions. We found that the internal circuit structure of the

best-fit models agrees with well-established features of retinal

circuitry (Figures 3, 4, 5, and 6) and also with our new experi-

mental observations (Figure 7). Below are two additional predic-

tions to be tested in future experiments, using direct measure-

ments of cellular physiology or synaptic connectivity.

First, our model predicts greater linearity of BC output in ON

GCs (Figure 4). At the ganglion cell level, such asymmetry be-

tween ON and OFF GCs has been reported in the mammalian



retina [35] and was largely attributed to network effects [36, 37].

For example, even though the outputs of both ON and OFF BCs

are mostly rectified [38], the visual response of ON GCs can be

linearized by a feedforward inhibition from OFF amacrine cells

(‘‘crossover inhibition’’) [39]. The asymmetry between the ON

and OFF pathways, however, has not been directly examined

in the salamander retina. It also remains to be studied how

the output properties of distinct BC types contribute to this

asymmetry.

Second, the model predicts distinct feedback processing at

the level of BC and GC outputs (Figure 5). The two feedback

functions can differ in polarity and dynamics, and such proper-

ties also varied across cells. The feedback in the inner retina

could arise from a cellular effect, such as synaptic depression

at the BC synapses [26] and after-hyperpolarization at the GC

level [25, 38], or from a network effect involving amacrine

cells driven by BCs [40, 41] or by GCs via gap junctions [42].

Given that addition of the feedback provided the greatest

improvement in model performance (Figures 2C and 2D), it is

worth examining how these or other mechanisms contribute to

the feedback effects and how those vary across different gan-

glion cell circuits.

Future Developments of Circuit Inference
The broad distribution of themodel performance (Figures 2C and

2D) suggests that there is room for improvement. One way to

improve the present model is to add more components. Instead

of using identical BCMs, for example, one could introduce

distinct BCM types, such as those corresponding to ON BCs

and OFF BCs. This will be essential for modeling ON-OFF

GCs, such as W3 cells in the mouse retina [43], and may also

serve to reveal interesting interactions between the ON and

OFF pathways [39, 44, 45].

Another way of refining the model is to represent amacrine

cells explicitly, not just through negative pooling weights and

time delays (Figure 6). Amacrine cells are a very diverse class

of retinal neurons [8] and participate in distinct circuit functions

[6]. For example, narrow-field amacrine cells are needed in

modeling direction-selective GCs [46], whereas wide-field ama-

crine cells can explain the suppression that many GCs receive

from distant stimuli [15, 22, 33, 47]. Using a broader range of vi-

sual stimuli will most likely help in inferring these diverse network

features.

Finally, such circuit inference methods should be extended

to other brain areas, in particular where one has information

about the structural connectome [1] along with large-scale

electrical and optical recordings [2, 3]. In most instances,

these recordings will be sparse, covering only a fraction of

neurons and synapses. The modeling approach advocated

here can fill in the gaps, using known structural information

as a guide in parameterizing the circuits and the available

functional observations as a target when optimizing the model

parameters. Future developments in this area might consider

a broader range of circuit architectures, including recurrent

connections between and within areas [48], and exploit other

objective functions for data fitting [49, 50]. Successful applica-

tion of such extended models and inference algorithms will

help derive insights from the impending flood of structural

and functional brain data.
EXPERIMENTAL PROCEDURES

See the Supplemental Experimental Procedures for details. No statistical

method was used to predetermine sample size. Unless otherwise noted, sta-

tistical comparisons across models and corresponding experimental data

were performed as sign tests with a significance level of 0.05.

Electrophysiology

Multi-electrode recordings from GCs and intracellular recordings from BCs in

an isolated retina (larval tiger salamander) were performed as described previ-

ously [15, 27], following protocols approved by the Institutional Animal Care

and Use Committee at Harvard University. The data from simultaneous

BC-GC recordings were analyzed similarly as in [28] for estimating the BC

projective field (Figure 7). The spatiotemporal receptive fields of the recorded

cells (e.g., Figure 3C) were estimated by reverse-correlation methods using

randomly flickering bar stimuli (bar width, 66 mm; refresh rate, 60 Hz; Fig-

ure S2A) [12].

Modeling

Weemployed the cascademodel framework [4, 5] and progressively extended

its complexity (Figures 1 and S1) from the linear-nonlinear (LN) model to the

LNFDSNF model. Each stage was modeled as follows:

‘‘L’’: BCM temporal processing was modeled as a sum of two infinite im-

pulse response filters at each spatial location (Equations S3–S5; Figures

S1A–S1C).

‘‘N’’: half-wave rectifiers (Equation S6; Figure S1D) were used to approxi-

mate the nonlinearity in all cases except for the LNSNmodel that employed

a pointwise static nonlinearity on the BCM output (Figure 4).

‘‘F’’: feedback process was modeled as a linear convolution of a temporal

kernel (Equation S7; Figure S1E).

‘‘D’’: the time delay was introduced by a linear filter that shifts each BCM

output in time (Equation S8; Figure S1F).

‘‘S’’: spatial pooling of the GCM is formulated as a weighted sum of the

BCM outputs (Equation S9; Figure S1G).

We wrote custom codes in C++ to fit the models to the ganglion cell firing

rates (bin size, 1/60 s) in response to the randomly flickering bar stimuli (Fig-

ure S3) and analyzed themodel performance by the explained variance (Equa-

tion S10) [11].

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.
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