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Abstract— The processing capabilities of biological vision sys-
tems are still vastly superior to artificial vision, even though
this has been an active area of research for over half a century.
Current artificial vision techniques integrate many insights from
biology yet they remain far-off the capabilities of animals and
humans in terms of speed, power, and performance. A key aspect
to modeling the human visual system is the ability to accurately
model the behavior and computation within the retina. In par-
ticular, we focus on modeling the retinal ganglion cells (RGCs)
as they convey the accumulated data of real world images as
action potentials onto the visual cortex via the optic nerve.
Computational models that approximate the processing that
occurs within RGCs can be derived by quantitatively fitting the
sets of physiological data using an input—output analysis where
the input is a known stimulus and the output is neuronal record-
ings. Currently, these input—-output responses are modeled using
computational combinations of linear and nonlinear models that
are generally complex and lack any relevance to the underlying
biophysics. In this paper, we illustrate how system identification
techniques, which take inspiration from biological systems, can
accurately model retinal ganglion cell behavior, and are a viable
alternative to traditional linear-nonlinear approaches.

Index Terms— Artificial stimuli, biological vision,
computational modeling, receptive field (RF), retinal ganglion
cells (RGCs).

I. INTRODUCTION

IMICKING biological vision systems have been a con-
sistent challenge in the artificial vision research field
for many years. Vision begins with light that is projected to
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Fig. 1. Recorded RFs from “parasol” ganglion cells in macaque retina.
(Figure adapted from [3] according to the Creative Commons Attribution
License.)

the back of the eye onto the retina, which is an extension
of the brain approximately 0.3-0.4 mm thick and covers an
area of approximately 520 mm? [1]. Around 125 million rods
and cones, photoreceptors transform visible light into neural
signals [2]. This is in comparison to 1 million ganglion cells,
which receive the signal information, having been filtered
through intermediate layers consisting of horizontal, bipolar,
and amacrine cells. There are around 15-20 distinct types
of retinal ganglion cells (RGCs), which transform the signal
information into what are known as action potentials (spikes)
and transmit the information via synaptic connections to the
visual cortex for higher processing. Previously, the retina was
thought of as a simple spatiotemporal filter, with the real
processing beginning in the visual cortex. However, this view
has been substantially revised in recent times [4].

There is very little feedback from the brain to the
retina; thus, it is an ideal biological system to derive the
computational models of a stimulus—response relationship,
as the inputs can be precisely controlled whilst the output
can be extracellularly recorded from RGCs through the
use of a multielectrode array [5]. Each RGC pools signals
from multiple photoreceptors via a networked infrastructure
of the various cell types. Collectively, the spatial area of
photoreceptors, which contribute to an RGC, eliciting a
response is known as the receptive field (RF), which can also
be referred to as the region of the sensory space in which
visual stimulus triggers a neuron to fire. The general shape
of this spatial area is commonly approximated to be either a
circular [6] or an elliptical region that is often defined with
a 2-D Gaussian spatial profile [7], [8]. In reality, however,
the actual shape of the RF is highly irregular as demonstrated
in Fig. 1 where RGCs from macaque monkeys are shown to
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closely interlock and span the entire area of the visual window.
Derived models which accurately describe this relationship
progress our functional understanding of the retina and inspire
future image processing research [9]. In fact, biologically
inspired models of the retina, between stimulus and response,
have been shown to outperform various machine vision
techniques in terms of speed, power, and performance [10].

Modeling of these temporal neural recordings, however,
is challenging due to insufficient knowledge about the
internal structure and interconnections between cells.
Linear—nonlinear (LN) cascades are a popular class of
quantitative models used to describe the stimulus-response
relationship [11]. In particular, LN models have been used
to describe the processing in the retina [12] though the
main drawback is that they lack any relationship between
the derived parameters and underlying biophysics of the
system [11]. System identification tools are useful in this case
as they are suited to dynamical systems and allow for a better
insight into the underlying physics of the biological system.
First, to understand the responses of auditory neurons [13],
output responses were recorded using white noise stimuli
and inferences were made on mapping the stimulus to the
response. As is often the case, white noise stimulation is
preferred for modeling biological vision systems [14] as it
remains controlled and is easily analyzed mathematically.
Howeyver, there is evidence that the use of artificial stimuli
produces models that do not adequately describe responses to
natural visual scenes [15]. Therefore, models created under
these conditions using artificial stimuli may only be considered
a subset of the full biological model under certain conditions.

Artificial neural network (ANN) methodologies, by defi-
nition, are designed to mimic the biological aspects of the
human brain [16] and through extension, the vision system.
Specifically, nonlinear autoregressive network with exogenous
inputs (NARX) and k-nearest neighbors (kNNs) approaches
have been applied to neural encoding models in human
vision [17] whilst methods, such as time delayed neural net-
work, multilayer perceptron, and other ANN implementations,
have been used to derive the models of retinal ganglion
cell visual processing [18]-[20]. The nonlinear autoregres-
sive moving average with exogenous inputs (NARMAX)
model [21]; a parametric system identification technique,
which is a natural extension to nonlinear autoregressive exoge-
nous (NARX), has also been used within vision studies to
model adaptation of photoreceptors to light in flies [22]. The
NARMAX technique lends itself to a broad range of appli-
cations in several areas which include modeling robot behav-
ior [23], time series analysis [24], iceberg calving and detect-
ing, and tracking time-varying causality for EEG data [25].
In previous work, [19], [26], the NARMAX methodology has
been utilized to help formulate a retina modeling development
process and in particular, to express the biological input—output
relationship using polynomial models.

The work presented in this paper forms an essential com-
ponent of the VISUALISE FP7 Project, which seeks to better
understand the behavior of the biological retina in order to
advance artificial vision systems. The motivation behind this
paper is to utilize computational models, which have been
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Fig. 2. Calculating spike-triggered average.

derived from biological systems to facilitate fast, robust, and
efficient machine vision to overcome the existing weaknesses
in artificial vision systems. In this project, we have already
deployed the models on a silicon retina.

In the experiments here, we expand on [26] by introducing,
in addition to the NARMAX model, the self-organizing fuzzy
neural network (SOFNN) and NARX methodologies. The
predictive performance of the investigated methodologies to
adequately model a retinal ganglion cell’s output is evaluated.
Performance is compared amongst these popular approaches,
outlined in Section II, with specific reference to the standard
LN cascade technique. Section III provides details on the
physiological experiments used for data collection and the
methods utilized to preprocess the data to form and input—
output time series configuration suitable for modeling. The
results are presented in Section IV where models have been
derived based on two types of artificial stimuli. These models
are then analyzed further to determine any underlying system
dynamics. Finally, a concluding discussion based on the find-
ings of this paper is presented in Section V along with future
directions for investigation.

II. METHODS

Deriving a quantitative relationship between stimulus and
response of an RGC is challenging if we consider the internal
cell structure that precedes them or the numerous interactions
over the many interconnections between cells. To simplify this,
we consider the problem with a black-box approach, which
aims to estimate a mathematical model for a regression data
set and apply a number of different methods to form this
model. In keeping with traditional approaches, the LN cascade
approach is also utilized as a comparison to the investigated
approaches.

A. Linear—Nonlinear

The LN cascaded approach is a popular method of esti-
mating the output firing rate of a neuron by applying the
input to a linear temporal filter followed by a static nonlinear
transformation [11] and can be described by

r(t) = FlaxS$) 1)

where a is the temporal linear filter, F' is a static nonlinearity,
and a x S; is the convolution of the temporal linear filter and
stimulus S;. The first step in estimating the response of the
retina to visual stimuli is to compute the linear filter. This
is typically accomplished by computing the spike triggered
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average (STA), which is simply the average stimulus preceding
each spike (see Fig. 2).

In [14], this is defined by (2), where T is the duration of
the stimulus recording and S; f; is the stimulus preceding a
spike, f;. Thus, the STA is the sum of all stimuli preceding
a spike divided by the total number of spikes within the
recording

L i Sif:
>k

The size of the temporal window is determined by examin-
ing the duration of the average response and ascertaining the
point at which it converges to zero [14].

Determining the latter element of the LN cascade entails the
convolution of the stimulus with the computed STA[a *S;, (1)]
and computing the static nonlinearity (). This is achieved by
plotting the spike count as a function of the convolved stimulus
and fitting a curve.

)

B. Nonlinear Autoregressive Exogenous Model

NARX is part of the ANN family and is a model of a
nonlinear neural network which accommodates dynamic inputs
from a time series type data set. It can learn to predict future
values of the time series based on past information from
the same time series, feedback input, and an additional time
series referred to as the exogenous time series. Based on the
same architecture as conventional recurrent neural networks,
NARX provide a powerful solution to time series prediction
that offers more effective learning and faster convergence over
other ANNs [27]. A further advantage in principle is that one
can use NARX networks, rather than conventional recurrent
networks with complex differentiable nonlinearities, without
any computational loss [28].

The topology of the network incorporates input, hidden, and
output processing element layers with the input to the network
being fed by a number of delay units. Feedback from the
output is also fed back to the hidden layer via delay units [29]
as shown in Fig. 3.

The description of the example model (Fig. 3) can be
denoted as

N M
() = f(z aiy(t — i)+ D bix(t — i)) 3)
i=1 i=1

where N, M, a;, and b; are constants; x(¢) is the source input
and y(¢) is the output of the network. Previously, NARX have
been used to model various elements of the visual system,
including human tracking for robot vision applications [30]
and the encoding of the natural visual system in humans
through in vivo experimentation [17]. Although it has been
proven that NARX is effective in its predictive performance
of complex time series data [31], one of the disadvantages of
models created via NARX is that they are not easily analyzed
due to their opaque nature in terms of the obtained mapping.
This makes it very difficult to understand any underlying
system dynamics that might otherwise be apparent in alter-
native nonlinear system identification methods, for example,
NARMAX, which is discussed in Section II.C.
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Fig. 3. Architecture of an NARX network [29].

C. Nonlinear Autoregressive Moving Average
Model With Exogenous Inputs

A further improvement to the predictive powers of the
NARX model can be achieved when the previous errors
of the system are integrated as controlled variables [32].
An NARMAX model is formed as the result of this. The
NARMAX approach is a popular system identification tech-
nique used when attempting to model the nonlinear relation-
ship between the inputs and outputs (stimulus and response).
It does this by representing the problem as a set of nonlinear
difference equations. The NARMAX model, which is a natural
extension of the ARMAX model [33], can be defined by

y() = Fly@t—=1),...,y(t —ny),ult —d),...,u(t —ny,),
e(t—1),...,e(t —ne)] +e(t) 4)

which accounts for the combined effects of noise, modeling
errors, and unmeasured disturbances concerning the inputs
and outputs. Here, u(z) and y(¢) are the input and output
vectors, respectively, e(f) is system noise, which is considered
bounded and cannot be measured directly, and ny andn, are
the maximum output and input delays, respectively. F[.],
which is an unknown nonlinear function, is typically taken
to be a polynomial expansion of the arguments.

To develop an NARMAX model, the structure of the nonlin-
ear equation must first be identified along with the estimation
of its parameters. The overall approach is made up of the
following steps [25].

1) Structure Detection: Determine the terms within the

model.

2) Parameter Estimation: Tune the coefficients.

3) Model Validation: Analyze model to avoid overfitting.

4) Prediction: Output of the model at a future point in time.

5) Analysis: Analyze model performance and determine the

underlying dynamics of the system.

As the structure is typically unknown prior to the imple-
mentation, a range of possibilities exist to approximate
the function, including polynomial, rational, and various
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ANN implementations [33], such as the NARX network.
The polynomial models, however, offer the most attractive
implementation with regards to visual modeling as they allow
for the underlying dynamical properties of the system to be
revealed and analyzed. One solution to determine the impor-
tant terms of the model can be achieved using an orthogonal
least squares approach by computing the contribution that each
potential model term makes to the system output. Building
the system this way, term by term, exposes the significance
of each new term added and allows for the avoidance of
overfitting due to an excessive use of time lags or nonlinear
function approximations [33] by ensuring that the model is as
simple as possible and contains good generalization properties.
This approach simulates investigative modeling techniques
where the important model terms are introduced first and
then the model is refined by adding in less significant terms.
The only difference is that in the NARMAX method, the
model terms can be identified directly from the data set. The
unknown parameters and system noise can then be estimated
and accommodated within the model. These procedures are
now well established and have been used in many modeling
domains [34].

D. Self-Organizing Fuzzy Neural Network

Another method which can be utilized to model and analyze
time series type data sets is the SOFNN. An SOFNN is a
hybrid network, which has the capability to model and forecast
a complex nonlinear system. It is capable of self-organizing its
architecture by adding and pruning neurons as required based
on the complexity of the data set. This alleviates the require-
ment of predetermining the model structure and estimation
of the model parameters as the SOFNN can accomplish this
without any in-depth knowledge of neural networks or fuzzy
systems. The SOFNN approach has demonstrated good per-
formance in applications of function approximation, complex
system identification, and time series prediction, further details
of which can be found in [35]-[38].

The main architecture of the SOFNN is a five layer fuzzy
neural network as shown in Fig. 4. These include an input
layer, ellipsoidal basis function (EBF) layer, normalized layer,
weighted layer, and output layer. The SOFNN has the ability
to reorganize the connections between these layers during the
learning process. In the EBF layer, each neuron is a 7-norm
of Gaussian membership function attributed to the networks
inputs (see Fig. 5) where each neuron signifies the if-part of
the fuzzy rule. The output from this layer is computed by
products of the membership values of each input. The output
of the EBF layer is normalized by the third layer, which
contains an equal number of neurons, by dividing each output
by the sum of all outputs.

The fourth network layer of the network is the weighted
layer and signifies the consequent then-part of the fuzzy rules.
Each neuron in this layer has two inputs, one of which is
directly related to the output of the previous layer whilst the
other is fed by a weighted bias. The product of these two inputs
translates as the output to the final layer, which contains a sin-
gle neuron representing the summation of all incoming signals.
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Fig. 5. Internal structure of EBF neuron.

During the learning process of the SOFNN, its internal
structure is dynamically modified through adding and pruning
of neurons within the EBF layer to achieve an economi-
cal network size. Before adding a neuron to the network,
existing membership functions are first examined to ascertain
whether or not they can be modified to accommodate the new
training sample while considering the generalization perfor-
mance of the overall network. This is determined using the
following error criterion:

le@®)] = Id; — vl 5)

where d; is the desired output of the system and y; is the
network output. If this error is greater than some user-defined
threshold ¢ adding a new EBF neuron to the network will be
considered, otherwise an existing membership function may
be modified so that it appropriately clusters the new training
sample.

Pruning of a neuron is governed by the importance of
each neuron based on its contribution to the overall networks
performance. The strategy is based on the optimal brain
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surgeon approach [39], which uses the second derivative
information to find the least important neuron and prune
it from the network. If the subsequent performance of the
SOFNN remains unchanged, the neuron is permanently
deleted. Consequently, the neuron is restored should the per-
formance be significantly degraded. An in depth explanation
of the adding and pruning strategy is outlined in [37].

III. STIMULUS AND DATA PREPROCESSING

Neuronal data were recorded from retinas, which were
isolated from dark adapted adult axolotl tiger salamanders,
similar to the approach in [5] and [40], where the retina is
divided in half, with each half placed cell side down onto a
multielectrode array. Each image was projected onto the RGCs
by a miniature organic light-emitting diode display with white
light. A lens then demagnifies the image and focuses it onto
the photoreceptor layer of the isolated retina. The stimulus
display ran at 60 Hz whilst the stimulus itself was updated
at 30 Hz, meaning a new stimulus presentation was made
approximately every 33 1/3 ms. The neural responses (spikes)
were recorded at 10 kHz and binned at the stimulus update
rate; meaning that all spikes that occur within the stimulus
presentation timeframe are summed. Recorded spikes were
sorted off-line by a cluster analysis of their shapes, and spike
times were measured relative to the beginning of the stimulus
presentation.

A. Stimulus

These recordings were performed while under stimula-
tion using temporal and spatiotemporal Gaussian white noise
sequences. Artificial white noise sequences are frequently
utilized when determining various characteristics of RGCs,
including the STA (Section II-A), as this avoids cell adaptation
to sustained stimuli, is relatively robust and spans a wide
range of visual inputs [14]. An example of the stimulus is
shown in Fig. 6, where each image in the temporal sequence
Fig. 6(a) and spatiotemporal sequence Fig. 6(b) is presented
sequentially. Fig. 6(a) shows a set of uniform intensity tempo-
ral images drawn randomly from a normal distributed Gaussian
white noise sequence with zero mean and a standard deviation
of 1. The sequence is generated using the gasdev() function
from the Numerical Recipes library [41]. This sequence is used
for full-field illumination, where all pixels within each image
are illuminated with the same uniform light intensity; thus,
no spatial arrangement is observable. This is referred to as full-
field flicker (FFF) and is the least complex form of artificial
stimulus used within these experiments. The models derived
under these conditions would only be considered a subset
of the real neural model as it only considers the temporal
component. Thus, Fig. 6(b) extends the stimulus input range
to include a spatiotemporal input by introducing the binary
checkerboard pattern. The checker-board flicker (CBF) extends
the complexity of the input due to an additional spatial com-
ponent varying randomly across time. In terms of modeling,
it allows the incorporation of local spatial summation of infor-
mation within the complete RF, whereas FFF does not. Each
binary checker has a resolution of 10 x 10 pixels onscreen and
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Fig. 6. Pseudorandom sequences. (a) Gaussian temporal sequence.
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Fig. 7. Preprocessing step which shows how the local stimulus pertaining to
a cell RF is weighted with a 2-D Gaussian filter. (a) Local stimulus for a cells
RFE. (b) 2-D Gaussian used to weight the stimulus intensities. (c) Weighted
image of the local stimulus intensities.

is drawn again from a random sequence generated using the
gasdev() function with an assigned value of either —0.5 or 0.5,
independent of neighboring checkers. CBF is commonly used
to determine characteristics of a cell’s RF [42] and in this case,
as a preprocessing step, it is cropped to the determined size
of the RF region as shown in Fig. 7(c).

B. Data Preprocessing

The overall goal of the preprocessing stage is to manipulate
the data so that they form a regression or classification data
set, i.e., input—output corresponding to the stimulus—response,
which then can be used for developing the computational
models. Recordings were supplied for a number of ganglion
cells and organized within two data sets, both containing the
visual stimuli and neural spike responses. The first data set
contained a large set of nonrepeated stimuli (2 16000 samples
for FFF and 258000 samples for CBF) that are suitable to
ascertain characteristics such as the STA and to ensure that a
sufficient number of varied stimuli are presented in order to
evoke cell responses. The second data set contained a much
smaller set of stimuli (1200 samples), which were presented
to the cells repeatedly.

Traditionally, only stimulus values within a cell’s RF are
considered for analysis as only values within this sensory
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space contribute to a cell’s response. However, as FFF stimulus
has uniform spatial intensity throughout, there is no need to
extract the specific stimulus in the region of the RGCs RF;
thus, the average intensity of each presented image is extracted
instead. The neural response, originally recorded as a fre-
quency of 10 kHz, was binned at 30 Hz to align well with
the stimulus input forming a single input—output data set.

As a preprocessing step for the CBF stimuli, the pertinent
stimulus values must first be extracted from the checkerboard
pattern [Fig. 7(a)]; here, we extract only those checkerboard
values located either inside, or on the border of the cell’s
RF. The RF is determined using a standard reverse-correlation
method [5], [14], which is a technique for studying how
sensory neurons summate signals from different times and
locations to generate a response [43].

To emulate the processing that occurs between the pho-
toreceptors and RGCs, the local stimulus within the RF
is weighted using a 2-D Gaussian filter (with a support
of 3c) [9], which is shown in Fig. 7(b). From the resulting
weighted stimulus, shown in Fig. 7(c), the pixels within the
region of the RF (green ellipse) are extracted and summed
to form an input for the derived models. This results in a
single value representing the CBF pattern for each time step
rather than the individual pixel values (This is the standard
approach [44] but, as it will be discussed later, the authors
believe it merits further investigation into the use of 2-D
inputs). The binned neural response is again used as the output
which is binned according to the stimulus update rate. In the
case of the second data set, i.e., the repeated trials, the mean
of the binned spike rate is computed using the 43 trials and
used as the model output.

IV. RESULT

Recordings of the ganglion cell neural responses (spikes) to
the FFF and CBF stimulation were provided for a number of
different ganglion cells. Here, we demonstrate the analysis of
two selected ganglion cells for each stimulus set, one ON-cell
and one OFF-cell. The cell type is traditionally characterized
by the shape of its temporal profile (STA) [14], [45], [46],
whilst the length of the temporal window can be assessed by
examining the duration of the average response and ascertain-
ing the point at which it converges to zero [14]. Fig. 8 shows
the calculated profiles for both cells, where it was determined
that 21 lagged values (700 ms) of the time series were suffi-
cient to capture the required behavior. Fig. 8(a) shows a tem-
poral profile akin to what is described as a biphasic OFF type
cell in [45]; we refer to this cell simply as an OFF-cell in this
paper. Fig. 8(b) shows a profile that is typical of an ON-cell.

A. Temporal Artificial Stimuli

Determining the STA profile of the cell is also useful for
indicating the number of lagged values to use for training
the models. For instance, for results presented in this section,
it was estimated that 21 lagged values would be sufficient
to train each algorithm. Upon further investigation, it was
established that the use of ten lagged values, essentially
capturing the main STA characteristics (Fig. 8(a) and (b)), was
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TABLE I
RMSE VALUES FOR OFF-CELL USING FFF STIMULI

Training RMSE | Testing RMSE
LN

0.71 0.63

NARMAX 0.67 0.61
SOFNN 0.77 0.68

sufficient to train both the NARX and NARMAX methods and
provided a marginal improvement in the estimated response.
For the SOFNN method, however, the full range of STA values
worked best.

Results of the derived models for the FFF stimuli are
presented in Tables I and II, respectively. For each of the
different approaches, model accuracy is measured using the
root mean square error (RMSE) between the predicted and
actual spike rate. From the results shown, it can be observed
that the NARX method performs significantly better than
the other investigated methods for both cells. Specifically,
the performance increase of the NARX method over the
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TABLE II
RMSE VALUES FOR ON-CELL USING FFF STIMULI

Training RMSE | Testing RMSE

0.37 0.35
NARMAX 0.38 0.37
NARX 0.34 0.33
0.42 0.41

LN method is quite substantial, with respect to the OFF-cell
for both training and testing data sets. Surprisingly, integrating
the previous errors of the system as controlled variables did not
improve the predictive qualities of the model (Section II-C),
as is evident by the NARMAX output.

Although the NARMAX approach achieved good results for
the OFF-cell surpassing both the LN and SOFNN methods in
performance, it did not improve upon the NARX model output
which is less complex and requires considerably less com-
putational power. Additionally, the SOFNN method, which
has shown good performance in modeling output responses
of isolated mice retinas [18], fails to provide an improved
performance over the LN model for the salamander data.

To demonstrate the visible difference in performance of the
NARX versus LN method, the training and testing outputs
are shown in Fig. 9 for 200 samples. The results presented
here are for the ON-cell, which shows the performance of the
NARX method to be improved in terms of the magnitude even
though performance in terms of RMSE is not as significant in
comparison to the OFF-cell. This is evident when comparing
Fig. 9(b) and (d), which relates to the testing output. It can
be observed that both methods perform well in terms of
predicting the timing of the spike rate though the NARX
method additionally improves the magnitude of the predictions
and in the majority of cases, reaches the target spike rate.

B. Spatiotemporal Artificial Stimuli

To increase the complexity of the derived models, such
that they can generalize over a more complex stimulus set,
the CBF data set is utilized. The results of the experiments
for both data sets for the OFF-cell and ON-cell are outlined
in Tables IIT and IV, respectively where model accuracy
is measured in terms of the RMSE between the predicted
and actual spike rate. Although the same cells are in use
for these experiments, the stimulus sets differ and thus the
results between data sets are not directly comparable. One
observation, immediately noted, is that there is no clear
separation between the performances of the LN approach
versus the other investigated methods. This is discussed later.
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Fig. 10. Plot illustrating STA and linear terms from cubic NARMAX model showing (a) STA of the OFF-cell, (b) NARMAX terms for the OFF-cell model,

(c) STA of the ON-cell, and (d) NARMAX terms for the ON-cell model.

TABLE III
RMSE VALUES FOR MODELS OF OFF-CELL USING CBF STIMULI

Training
RMSE
(Dataset 1)

Testing
RMSE
(Dataset 1)

Testing
RMSE
(Dataset 2)

NARMAX
NA
SOFNN

In terms of the RMSE values, the NARX method out-
performs the other models for both cells during the training
phase. Within the testing data sets, however, the LN method
performs on par with the NARX method for both testing
sets with respect to the ON-cell and for the second data set
with respect to the OFF-cell. Among the remaining system
identification models, the NARMAX model outperforms the
SOFNN model for both the OFF-cell and ON-cell, with
the exception of the SOFNN model achieving an equivalent

TABLE IV
RMSE VALUES FOR MODELS OF ON-CELL USING CBF STIMULI

Training Testing Testing
RMSE RMSE RMSE
(Dataset 1) | (Dataset 1) | (Dataset 2)
0.38 0.38 0.24
NARMAX 0.39 0.38 0.25
NARX 0.37 0.37 0.24
SOFNN 0.39 0.38 0.27

performance on ‘Dataset 1’ for the ON-cell. Emphasis is drawn
to the fact that amongst the number of methods investigated,
there is no significant improvement over the standard LN
approach. We believe that, due to the increased spatial com-
plexity of the stimulus, important information is being lost
through the interpretation of the RF. This is currently achieved
by extracting pertinent values inside the RF and simply sum-
ming or averaging to a single representative value. Interpreting
the RF in this way disregards any spatial characteristics that
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Fig. 11.
weights for the ON-cell model.

may have proven to be important to the cells behavior. This
concept is explored further in Section V.

C. Model Analysis

The various models derived were analyzed further to ascer-
tain any underlying system dynamics that may be of interest to
provide areas for further investigation. Models developed for
both the FFF and CBF stimulus showed similar characteristics
when under review thus here we report only on the analysis
for the FFF stimulus set.

Analysis of the NARMAX model reveals some interest-
ing observations within the model terms. To discuss further,
we first compute the STA using the standard approach reported
in [14]. The terms for each derived NARMAX model are
then plotted and compared to the STA. Fig. 10 illustrates the
calculated STA and plotted NARMAX terms for both cells
where the similarities between them are clearly observable.
It is important to note that the NARMAX terms are based
on what the model deems as important when it is being
derived. Therefore, for the OFF-cell, Fig. 10(b) shows the
terms considered most important when training the model,
which suggest that dramatic changes in the stimulus contrast
levels are important. This is also the case when comparing

Lags for most prominent neuron (Layer weight * Input Weights)

Plot illustrating (a) STA of the OFF-cell, (b) NARX network weights for the OFF-cell model, (c) STA of the ON-cell, and (d) NARX network

the STA and terms for the ON-cell which are shown
in Fig. 10(c) and (d).

Due to the opaque nature of the NARX approach it is
difficult to gain insight into any RGC models created using
them. However, when analyzing the weights of the input
and hidden layers, a similarity can also be drawn with the
calculated STA of the cell. Fig. 11(a) and (b) shows this strong
similarity when considering the most prominent neuron for
the OFF-cell. Again, this is evident for the ON-cell shown in
Fig. 11(c) and (d).

Finally, the SOFNN technique allows us to gain some
insight into the underlying dynamics of the data by analyzing
the fuzzy rules generated. An example of a rule generated by
the SOFNN for the OFF-cell under FFF stimulation is shown
in the Appendix. The result of plotting the coefficients of the
consequent part of the rule is shown in Fig. 12(b). Remarkably,
this approximately resembles the STA of the OFF-cell, which
is shown in Fig.12(a) for comparison. This, therefore, shows
that the response of the OFF-cell is due to a stark change in
light intensity from high to low in comparison to the mean
intensity level. Analyzing the rules for the ON-cell yields a
similar outcome [Fig.12(c) and (d)].

The rules of the SOFNN are able to accurately portray how
the model represents the input—output relationship, including
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how input terms are combined and weighted to achieve the
desired spike rate. This procedure is analogous to performing
spike triggered analysis of the cell. In the case here, we have
used artificial stimuli which means that it is difficult to gain an
understanding if there is some spatial or temporal relationship
of the inputs. However, the transparent nature of the model
allows us to see what terms could be important if using
targeted stimuli. We foresee that further experiments using
targeted stimuli could help reveal the spatial and temporal
relationship between the inputs which can help us gain an
understanding of the underlying biological processes. This
work is ongoing.

Both cells were adequately modeled by one neuron,
corresponding to 1 fuzzy rule. Under CBF stimulation,
the SOFNN model consisted of two neurons and consequently
two fuzzy rules to model each cell. The increased network
size, i.e., number of neurons, indicates that CBF stimuli are
more complex to model than the FFF stimuli.

V. DISCUSSION AND FUTURE WORK
A. Discussion

Modeling RGCs within the retina is difficult due to
insufficient knowledge about the internal components,

their organization and the complexity of the interactions within
the system. Existing computational models are traditionally
derived by quantitatively fitting particular sets of physiological
data using an input—output analysis involving computational
combinations of linear and nonlinear models that are gen-
erally complex and lack any relevance to the underlying
biophysics. The work outlined in this paper explores the
application and feasibility of modeling RGCs with system
identification techniques as an alternative to the traditional LN
approach. We present results based on the application of a
selection of system identification techniques, namely NARX,
NARMAX, and SOFNN, to both temporal and spatiotempo-
ral data revealing any underlying system dynamics that are
observed after the modeling process. Although a performance
increase is observable whilst stimulating the models with the
FFF data set, the LN method still remains the best method
when considering the spatiotemporal data.

The full-field temporal stimulus presented in Section III-A
was the least complex stimulus considered for the work and
consequently the explored models showed good performance
in predicting the relationship between stimulus and response.
In particular, the NARX method outperformed the other tech-
niques in modeling both the OFF-cell and ON-cell. This per-
formance increase is also clearly observable when reviewing
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the model for the ON-cell which shows the least difference
in terms of the RMSE when compared to the LN model.
Surprisingly, the NARMAX method did not offer a better
performance with its increased complexity through integration
of previous errors as controlled variables. Although the results
show that the NARMAX outperformed both the SOFNN and
LN techniques, it was not able to outperform NARX which is
significantly less complicated. The SOFNN did not perform as
favourably in modeling the salamander RGCs but has shown
good performance in past applications with mouse RGCs [18].
Its ability to capture characteristics that align well with the
RGCs STA surpasses the representation observed through the
NARMAX polynomial terms or the NARX internal layer
weights though for this application it seems more appropriate
to choose the simpler models that can generalise well over the
input data, such as the NARX model.

With these interesting results for the temporal stimulus,
we extended these modeling approaches to a more com-
plex spatiotemporal stimulus (outlined in Section III-A). The
spatiotemporal artificial stimuli increased the complexity of
the stimulus as it introduced the need to process the RF
information pertaining to each cell by extracting pixels within
the region of interest, weighting with a Gaussian filter and
summing the result. Of the methods investigated to model the
relationship of the increased complexity between the input
and output, the NARX method again performed favourably
in comparison to the other methods investigated. However,
where the NARX clearly performed better for the FFF data
set, the difference observed between the NARX and LN within
the CBF data set was diminished in terms of the RMSE.
Here, the NARX had an improved performance with respect
to the training data set for both cells but performed on par
with the LN method for the testing sets. The NARMAX
method provided a slightly improved performance over the
SOFNN method for the OFF-cell but an equal performance for
the ON-cell. Similarly, with the temporal data, characteristics
akin to the STA of each cell were observable in all the
system identification methods presented for the CBF data.
The readability of such characteristics offers an advantage
over more opaque approaches like LN that may provide a
more in depth understanding of the underlying dynamics of
the system, however further investigation into the relationship
between these characteristics and the STA is ongoing.

Although the models presented adequately fit the real neural
response, specifically the NARX method, there is quite a
significant difference between the results for the temporal and
spatiotemporal data sets. While not directly comparable, it can
be observed that within the temporal data results, there is a
clear separation between the performances of the standard LN
approach versus the more bioinspired techniques. Analysis of
the spatiotemporal results revealed results which were not as
clearly discriminable and as such, the LN still remains the best
model under the conditions tested.

Stemming from the comparative analysis between the
temporal and spatiotemporal modeling approaches, we further
investigated various aspects of the spatiotemporal modeling
process. In particular, we questioned the transformation
process of the RF and queried whether summing all of
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the spatial information to a singular representative value is
sufficient enough to model an RGC efficiently. Given the
increased complexity of the spatiotemporal data set compared
with that of the temporal data set, it was hypothesised that
summing the Gaussian weighted data within each RF was
resulting in the significant loss of spatial information which
could account for the increased complexity of fitting a model
to the neural response. We also hypothesise that the loss
of information explains the ability of the LN method to
match or closely match the performance of newer, more
sophisticated system identification techniques.

In [47], a method for retaining the spatial information
is presented which calculates the STA spatially as well as
temporally, filtering the stimulus with spatial information to
create the input stimulus to a model. In this method, it is the
LN method which benefits from this approach thus our initial
investigation led to constructing the linear filter within the
LN approach from spatial STA analysis. The results obtained
from this approach were marginally better in terms of RMSE
and the magnitude of the nonlinear estimate; however the
associated computational cost would be extremely large for
the NARX and other bioinspired methods without reducing
the input space.

B. Future Work

Given the results outlined in this paper, further investigation
is warranted into how the data within the RF is interpreted
when dealing with stimuli containing a spatial component.
The current method of collating all pixel information with the
RF region ignores spatial information and as a result, models
using CBF data perform on par with the standard LN method.
To improve upon this result, additional inputs to the model
would need to be considered which account for spatial variance
in addition to temporal variance. However, to consider all pixel
intensities would result in an increased computational cost thus
there is a tradeoff between efficiency and model complexity to
consider. Our future work will focus on different methods of
compressing this information so that its influence is calculated
correctly and with efficient computational complexity.

APPENDIX

An example rule generated by the SOFNN for the OFF-cell
under FFF stimulation is as follows.

Rule 1: If Input 1 is A(—0.19113, 1.0375) AND Input 2
is A(0.15069, 1.0375) AND Input 3 is A(0.10993, 1.0375)
AND Input 4 is A(—0.088315, 1.0375) AND Input 5 is
A(0.30136, 1.0375) AND Input 6 is A(—0.085507, 1.0375)
AND Input 7 is A(—0.064816, 1.0375) AND Input 8 is
A(—0.08625, 1.0375) AND Input 9 is A(0.23699, 1.0375)
AND Input 10 is A(—0.12157, 1.0375) AND Input 11 is
A(—0.71477, 0.96985) AND Input 12 is A(0.15307, 1.0375)
AND Input 13 is A(0.15517, 1.0375) AND Input 14 is
A(0.16102, 1.0375) AND Input 15 is A(0.16543, 1.0375)
AND Input 16 is A(—0.010237, 1.0375) AND Input 17 is
A(0.074938, 1.0375) AND Input 18 is A(0.1176, 1.0375)
AND Input 19 is A(0.00056977, 1.0375) AND Input 20 is
A(—0.20507, 1.0375) THEN
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Output: 0.33452 + —0.0070681 * Input 1 + 0.0029931 x*
Input 2 + —0.42334 % Input 3 + —1.4056 * Input 4 +
—0.89218 * Input 5 + 0.67233 * Input 6 + 1.428 * Input 7 +
1.1801 * Input 8 + 0.59511 * Input 9 + 0.12145 % Input 10 +
—0.10781 * Input 11 + —0.26965 * Input 12 + —0.29999 x
Input 13 4+ —0.34188 * Input 14 4+ —0.17775 * Input 15 +
—0.053445 x Input 16 + —0.034553 * Input 17 4+ 0.018151 *
Input 18 + 0.050873 * Input 19 4+ 0.01101 * Input 20.
Here, A (center, width) describes the membership function

for

each input. Similar to the machine learning models,

the inputs to the SOFNN are lagged values of the stimulus
sequence, so Input 1 corresponds to the current value of the
series (i.e., 0-ms delay), and Input 20 corresponds to the value
19 time steps in the past (i.e., 700-ms delay).
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