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SUMMARY

Neurons in sensory systems are often tuned to
particular stimulus features. During complex natural-
istic stimulation, however, multiple features may
simultaneously affect neuronal responses, which
complicates the readout of individual features. To
investigate feature representation under complex
stimulation, we studied how direction-selective gan-
glion cells in salamander retina respond to texture
motion where direction, velocity, and spatial pattern
inside the receptive field continuously change. We
found that the cells preserve their direction prefer-
ence under this stimulation, yet their direction en-
coding becomes ambiguous due to simultaneous
activation by luminance changes. The ambiguities
can be resolved by considering populations of direc-
tion-selective cells with different preferred direc-
tions. This gives rise to synergistic motion decoding,
yielding more information from the population than
the summed information from single-cell responses.
Strong positive response correlations between cells
with different preferred directions amplify this syn-
ergy. Our results show how correlated population
activity can enhance feature extraction in complex
visual scenes.

INTRODUCTION

A central finding for many sensory systems is that neurons are

tuned to specific stimulus features, such as orientation and

motion direction of visual stimuli, or pitch and spatial direction

of an acoustic sound. This neuronal feature selectivity is thought

to be a fundamental building block for how sensory systems

parse complex sensory scenes (Barlow et al., 1964; Bizley and

Cohen, 2013) and solve sensory detection tasks (Bendor and

Wang, 2005; Krishnamoorthy et al., 2017; Lettvin et al., 1959;

M€unch et al., 2009; Ölveczky et al., 2003; Schwartz et al.,

2007). In the retina, for example, direction-selective ganglion

cells respond with increased activity to visual stimulus motion
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in a specific direction but are suppressed by motion in the oppo-

site direction (Barlow and Hill, 1963; Borst and Euler, 2011; Lett-

vin et al., 1959; Mauss et al., 2017; Wei, 2018). This direction

tuning is thought to support the tracking of retinal slip and the

stabilization of gaze position (Sabbah et al., 2017; Yonehara

et al., 2016) as well as the detection of moving objects (Marques

et al., 2018; Vaney et al., 2001). How such neuronal feature

selectivity contributes to sensory information processing is

investigated extensively on the basis of custom-designed sen-

sory stimuli that focus on the specific feature of interest. Direc-

tion-selective neurons in the visual system, for example, are

traditionally studied with uniformly moving gratings or spots of

light, where the direction of motion is varied to characterize the

neurons’ directional tuning.

Yet, for most neurons that are considered as feature-selective,

activity can likely also be elicited or modulated by other stimuli.

Direction-selective retinal ganglion cells, for example, respond

vigorously to increases or decreases in luminance inside their

receptive fields, even without a motion component (Levick,

1967). Moreover, complex sensory stimuli, such as natural

scenes, generally contain multiple stimulus features that vary

dynamically in their strength. Under such circumstances, the

response of a feature-selective neuron may be ambiguous as

to whether it represents the occurrence of the particular sensory

feature that is typically used to characterize it. This raises the

question how downstream neurons can disentangle this ambi-

guity and readout information about the sensory feature in ques-

tion. One possibility may be to take multiple neurons into

account and consider the population code of their joint activity.

For populations of direction-selective retinal ganglion cells, this

can enhance the decoding of motion direction for stimuli drifting

at constant speed (Franke et al., 2016; Zylberberg et al., 2016).

Here, we explored the effectiveness of population codes for

resolving coding ambiguities under complex visual stimulation

by focusing on recently identified direction-selective ganglion

cells in salamander retina (K€uhn and Gollisch, 2016). In partic-

ular, we investigated cells that are sensitive to global motion pat-

terns, analogous to the ON direction-selective cells of the

mammalian retina, which are thought to provide information

about optic flow induced by head and eye movements and are

vital for gaze stabilization (Osterhout et al., 2015; Simpson,

1984; Yonehara et al., 2016). We found that the single-cell en-

coding of textures moving with continuously varying speed and
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Figure 1. Direction-Selective Ganglion

Cells Retain Their Directional Preference

under Complex Texture Motion

(A) (Top) Applied drifting grating for identifying di-

rection-selective cells (ellipse: receptive field of

sample cell; dashed square: recording area).

(Middle) Spikes from sample cell for five trials of

each of the eight grating directions. (Bottom)Mean

firing rates in Hz versus motion direction. Arrow

indicates preferred direction of the cell.

(B) (Top) Texture for complex motion stimulus

with sample trajectory. (Middle) Responses of

same cell as in (A) with schematic of spike-

triggered average (STA) calculation in x direction.

(Bottom) STA in x and y direction.

(C) Areas below STA in x and y direction are in-

tegrated to determine preferred direction for

complex texture motion.

(D) (Top) Preferred directions from drifting gratings

(blue) and complex texture motion (black) within

one sample retina (20 direction-selective cells).

(Bottom) Distribution of angular differences from

149 cells with significant motion STAs from 10

retinas is shown. For responses to contrast steps

and white-noise stimulation, see Figure S1.
direction is curtailed by the simultaneous encoding of visual

contrast. This leads to ambiguities in the readout of motion direc-

tion, but these ambiguities can be resolved by taking multiple

direction-selective cells into account, leading to a synergistic

population readout.

RESULTS

We recorded the activity of many ganglion cells simultaneously

from isolated salamander retina with multielectrode arrays and

identified direction-selective cells based on their responses to

drifting gratings (Figure 1A). The salamander retina contains

two types of direction-selective ganglion cells (K€uhn and Gol-

lisch, 2016). One responds well to global motion stimuli, analo-

gous to the ON direction-selective cells of the mammalian retina;

the other is more sensitive to local stimulation, akin to mamma-

lian ON-OFF direction-selective cells (Chiao and Masland, 2003;

Ölveczky et al., 2003). Given that our goal here is to analyze the

encoding of texture motion, we focused our analysis on the type

that responds well under global motion (see STAR Methods). In

contrast to the mammalian retina, these direction-selective cells

are OFF type (K€uhn and Gollisch, 2016; Figure S1).

Direction Selectivity Persists under Complex Texture
Motion
In order to analyze direction selectivity under complex motion,

we stimulated the retina with a smoothed white-noise texture,

which was shifted by small random steps (‘‘motion steps’’) in

both x and y direction according to a two-dimensional random

walk (Figure 1B). For assessing whether a recorded direction-

selective cell responded preferentially to a specific motion

pattern within this random trajectory, we calculated the spike-

triggered average (STA) of the motion steps (Figure 1B, bottom).

The resulting motion STAs depict the average stimulus trajec-

tories in both x and y direction prior to the occurrence of a spike.
964 Neuron 101, 963–976, March 6, 2019
We found that themotion STAs generally displayed a strong pos-

itive or negative peak between 150 and 200 ms prior to spiking.

These peaks indicate that direction-selective cells responded

asymmetrically to complex texture motion; otherwise, the inde-

pendent motion steps would sum to zero. Statistical analysis

by comparison with shuffled spike trains showed that the peaks

in the motion STAs were significant for 75% of the analyzed

direction-selective cells (n = 198 from 10 retinas), indicating

directional tuning. For comparison, only 8% of non-direction-

selective cells, as classified by their responses under drifting

gratings, had significant peaks (n = 2,758). The reason why

25% of the direction-selective cells did not show significant

peaks in their motion STAs was likely due to insufficient drive

by the applied texture motion; average firing rates of these cells

were low (1.5 ± 1 Hz; mean ± SD) compared to cells with signif-

icant peaks (5 ± 2 Hz).

To identify the preferred direction under texture motion of a

direction-selective cell with significant motion STA, we inte-

grated over the STA values of the x and y direction, respectively,

to obtain the preferred direction as a two-dimensional vector

(Figure 1C). Comparison to preferred directions obtained

for drifting gratings showed a close match (angular difference

3� ± 20�; mean ± SD; Figure 1D). This indicates that direction-

selective cells retain their asymmetric motion responses and

preferred directions during complex texture motion.

Motion Trajectories Can Be Decoded from
Direction-Selective Cell Populations
How well do the responses of direction-selective cells represent

the complex motion trajectory of the texture? To approach this

question, we aimed at reconstructing the motion trajectory,

that is, the sequence ofmotion steps, frompopulation responses

of direction-selective cells by employing a commonly used linear

decoder model (Borst and Theunissen, 1999; Gjorgjieva et al.,

2014; Warland et al., 1997). The decoder replaces each spike



Figure 2. Linear Population Decoding of

Random Motion Steps Is Synergistic for

Direction-Selective Cells with Different

Preferred Directions

(A–C) Trajectory reconstruction for a population of

20 simultaneously recorded direction-selective

ganglion cells.

(A) Filters in x direction (left) used to transform the re-

sponses (right) into the stimulus reconstruction in (B).

(B) Motion steps in x direction (gray), obtained

reconstruction (black), and low-pass-filtered stim-

ulus (red), obtained with a Gaussian kernel of

90 ms SD.

(C) Spectrum of mutual information between

stimulus trajectory and reconstruction.

(D) Mutual information for direction-selective cell

populations of different sizes. Information from

population responses Ipop (black dots) is compared

to the summed information from single-cell re-

constructions
P

Isg (gray line). Data show mean

and SD (depicted by error bars and shaded area,

respectively), obtained over all combinations from

the 20 cells in (A)–(C).

(E) Mean and SD of information ratios Ipop=
P

Isg for different subpopulations with either same preferred direction (temporal: purple; nasal-dorsal: blue; nasal-

ventral: pink) or with preferred directions distributed as equally as possible across the three groups (mixed: orange). (Right) Preferred directions and receptive

fields of the cells are shown. For a few cells, no receptive field was obtained.

(F) Boxplots of information ratios for cell pairs. Horizontal lines and boxes indicate median and interquartile range (IQR), respectively. Vertical lines extend to data

points within 1.5 3 IQR, and dots indicate outliers. Data are from 10 retinas, 198 cells, 462 pairs with same and 736 pairs with different preferred directions.
with an optimized filter shape for each cell and then sums the

contributions from all cells (Figure 2A). This decoding scheme

captures the intuitive notion of feature encoding by interpreting

spikes as directly representing the presence of the feature.

Similar schemes have already been successfully applied to

decode contrast signals from salamander retina (Gjorgjieva

et al., 2014; Warland et al., 1997). In our case, the decoder

aims at reconstructing only the motion trajectory, not the

contrast signals of the spatial texture. The optimal filters are

obtained from a reverse-correlation analysis. They are similar

in shape to the STAs in Figure 1B but are corrected for the pair-

wise correlations between the cells’ spike trains. For the

following analyses, the filters were always obtained from the

first 70% of the recording under texture motion, and the last

30% served for evaluating the reconstruction.

Comparison with the original trajectory (Figure 2B) shows that

the reconstruction resembled a low-pass filtering of the stimulus

motion. Fast changes in motion direction were not well captured

by the reconstruction. This is not surprising, given the limited tem-

poral resolution of phototransduction and synaptic transmission

(Astakhova et al., 2015; Marre et al., 2015; Suh and Baccus,

2014; Warland et al., 1997), which is also reflected in the slow

time course of the motion STAs (Figure 1B). In order to quantify

the reconstruction quality, we estimated the information provided

about the motion trajectory in frequency space (Figure 2C) and

thenobtained the total informationby integratingover frequencies.

Subpopulations with Different Preferred Directions
Show Synergy in Motion Decoding
Figure 2D shows the total information Ipop between stimulus and

reconstruction for direction-selective cell populations of different

sizes. As expected, taking more cells into account yielded larger
information values. Yet this did not level off even for populations

of up to 20 simultaneously recorded cells. For comparison, we

performed the same reconstruction analysis for each individual

cell and summed the resulting single-cell information values,P
Isg. Surprisingly, the reconstruction from population re-

sponses provided on average slightly more information than

the sum of single-cell information values. Thus, the population

response patterns were more informative about the motion

trajectory than would be expected from the individual cells if

these contributed information independently of each other, a

scenario that is commonly referred to as ‘‘synergy’’ (Brenner

et al., 2000; Gawne and Richmond, 1993; Montani et al., 2007).

For the direction-selective cells with sensitivity to global mo-

tion, which were analyzed here, preferred directions cluster

into three groups, separated by 120� between each other (Fig-

ure 2E, right; K€uhn and Gollisch, 2016). Thus, the observation

of synergy, albeit small, might be even more surprising when

considering that the larger populations had many cells with

nearly the same preferred motion directions, which should

encode similar aspects of the motion trajectory. To investigate

the effect of having cells with similar or different preferred direc-

tions in the population, we performed the reconstruction analysis

on subpopulations where all cells either had the same preferred

direction or where preferred directions were distributed as

equally as possible across the three groups. To focus on the rela-

tive gain or loss of information provided by the population, we

normalized the information value of the population decoder by

dividing through the sum of information values obtained from in-

dividual cells. Values of this ratio larger than unity correspond to

synergy, whereas smaller values signify redundancy. We found

that, for subpopulations with similar preferred directions, the tra-

jectory decoding was highly redundant (Figure 2E). By contrast,
Neuron 101, 963–976, March 6, 2019 965



Figure 3. Synergistic Trajectory Readout Is

Independent of the Spatial Structure of the

Texture

(A) Applied artificial andnatural textures. From left to

right: standard texture, pink-noise texture, and two

natural images (‘‘leaves’’ and ‘‘pebbles’’) are shown.

(B) Population filters in x direction of three direction-

selective cells for each of the textures.

(C) Information ratios of cell pairs with different

preferred directions. Boxes and horizontal lines

indicate IQR and median, respectively; values

within 1.5 3 IQR and outliers beyond are indicated

by a vertical line and dots, respectively.

(D) Schematic for using filters obtained from

different textures for the trajectory readout. For

each texture, filters were either obtained from re-

sponses under the same texture (‘‘same’’) or under

the smoothed white-noise texture (‘‘standard’’).

(E) Obtained information rates for different textures,

depending on source of the filters. Data are from

one retina, 19 cells, and 94 pairs with different

preferred directions.
decoding from subpopulations with maximal diversity in their

preferred directions yielded substantial synergy, especially for

subpopulations of 3 and 6 cells, where all directions were equally

represented (black arrows in Figure 2E).

The synergistic information gain for these subpopulations

does not simply reflect the difference in preferred directions. If

each cell contributed information independently about its

preferred direction, information from the population response

should at most be equal to the summed information from single

cells. Hence, there must be additional information about the

motion trajectory in their concerted firing. But where does this

additional information come from? To investigate this question,

we focus in the following on analyzing pairs of simultaneously re-

corded cells with either different or same preferred directions.

These pairs clearly show the effects of synergy and redundancy

with information ratios significantly larger or smaller than unity,

respectively (Figure 2F; p < 10�3 for both; Wilcoxon signed-

rank test). Note that the information ratio can reach values of

1.5 or larger for pairs with different preferred directions, showing

that more than one-third of the information about the trajectory

provided by the joint activity was not available from any of the

two cells alone.

Synergistic Decoding of Motion Trajectories
Generalizes over Different Textures
One may expect that the nervous system’s readout mechanisms

of a motion trajectory should be independent of the specific

spatial structure of themoving texture. To test this, we performed

experiments where, in addition to the standard smoothed white-

noise texture, a texture with a naturalistic spatial frequency spec-

trum as well as two natural images were applied (Figure 3A).

When examining the population readout model for each

texture individually, we found that the filter shapes were repro-

duced across the different textures (Figure 3B). Also, pairs of

direction-selective cells with different preferred directions often

showed synergy (Figure 3C; p < 10�3 for all textures; Wilcoxon

signed-rank test). The similarity of filter shapes suggests that a
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population readout model, obtained from one texture, should

generalize across textures. To test this, we compared the recon-

struction of a motion trajectory for a given texture based on pop-

ulation filters that were either obtained from responses to the

same texture or from responses to the standard texture (Fig-

ure 3D). Even though the total information obtained from a direc-

tion-selective cell population about the motion trajectory varied

for the different textures, the information values were similar

regardless of whether filters came from the same texture or

from the standard texture (Figure 3E), and information readouts

from pairs with different preferred directions were generally syn-

ergistic (p < 0.005 for all textures). Thus, the population readout

model indeed generalizes across textures.

Noise Correlations Are Not Essential for Synergistic
Decoding of Motion Trajectories
Synergy and redundancy in neuronal population codes have

often been linked to correlated activity (Averbeck et al., 2006;

Panzeri et al., 1999; Schneidman et al., 2003). We therefore

checked the spike correlations for pairs of direction-selective

ganglion cells during random texture motion, based on spike

counts in 33-ms windows, corresponding to the stimulus update

rate. For cells with different preferred directions, activation of

one cell by motion in its preferred direction should be accompa-

nied by suppression of the other by a motion component in its

null direction, whichmight suggest negatively correlated activity.

Nonetheless, pairwise response correlations between direction-

selective cells were always positive, even for cells with different

preferred directions (Figure 4A).

The observed correlations could reflect signal correlations, re-

sulting from stimulus-induced co-activation, as well as noise

correlations, which may follow from coupling or shared input

noise. Noise correlations are often considered as a potential

source of synergy and redundancy, in particular through spike

synchronization (Averbeck et al., 2006; Schneidman et al.,

2003). We therefore investigated the effect of noise correlations

by recording responses to repeated trials of identical texture



Figure 4. Synergy and Redundancy Do Not

Depend on Noise Correlations and Rely on

Relative Directional Preference

(A and B) Response correlations between cell pairs

with same or different preferred directions. Re-

sponses are taken from same (A) or ‘‘shuffled’’

trials (B) of repeated stimulus presentations (see

inset). Data are from 6 retinas, 104 cells, 389 pairs

with same and 615 pairs with different preferred

directions.

(C) Information ratios for three sample cells with

different preferred directions and nearby receptive

fields (top) from same or ‘‘shuffled’’ trials. Mean

and SD are from all eligible trial combinations.

(D) Information ratios of cell pairs with same (left) or

different preferred directions (right) from same

(black) or shuffled trials (purple). Data are from 6

retinas, 104 cells, 325 pairs with same and 501

pairs with different preferred directions.

(E) Schematic for ‘‘flipping’’ a cell’s preferred di-

rection. Trajectory of second trial (green) was flip-

ped along the x and y axis. Responses of cell pairs

were either combined from the same trial (‘‘same’’)

or from different trials (‘‘one flipped’’). (Bottom)

Sample responses, filters, and corresponding

preferred direction of a rightward-motion-preferring

cell are shown.

(F) Information ratios of cell pairs with same (left) and different preferred directions (right), with reconstructions obtained from filters and responses to same trials

(black) or different trials so that one preferred direction is flipped (green). Data are from one retina, 21 cells, 110 pairs with same and 94 pairs with different preferred

directions. Boxplots indicatemedian (horizontal line) and IQR (box); valueswithin 1.53 IQRandoutliers beyond are indicated by a vertical line anddots, respectively.
motion. We then compared the decoding performance when

cells responded to the same trial with the performance of the

same cells after shuffling the trials for each cell, which removed

potential noise correlations.

Although this shuffling reduced the overall correlations by a

small yet significant amount for pairs with different as well as

same preferred directions (Figure 4B; Wilcoxon signed-rank

test: p < 10�3 in both cases), it did not influence the patterns of

synergy and redundancy. For a sample population with three

cells of different preferred directions and strongly overlapping

receptive fields, Figure 4C shows that shuffling the trials had

hardly any effect on the decoding performance; in particular, it

did not abolish synergy. Analyzing all pairs of simultaneously

recorded direction-selective cells revealed that the distributions

of information ratios for cell pairs with different or same preferred

directions did not change significantly when potential noise cor-

relations were removed (Figure 4D; Wilcoxon signed-rank test:

p = 0.20 and p = 0.70, respectively). Hence, direction-selective

ganglion cells might show noise correlations (though slow

fluctuations in the population activity may also contribute to

the reduced correlations after shuffling; see Brody, 1999), but

these do not account for the observed synergy or redundancy.

Virtual Flip of One Preferred Direction in a Cell Pair Can
Turn Redundancy into Synergy
We next asked whether the emergence of synergy can be ex-

plained by how individual direction-selective cells encode com-

plex texture motion. If this is the case, then flipping the preferred

direction of one cell in a cell pair should exchange synergy for

redundancy and vice versa because the flipping reverses

whether two cells have similar or opposing preferred directions.
We can simulate this situation by showing the same moving

texture twice but once with the trajectory flipped for both x and

y direction (Figure 4E, top). Thus, we could compare the normal

trajectory decoding to the decoding where one cell responded

to the flipped trajectory, which effectively reversed the preferred

motion direction of this cell (Figure 4E, bottom).

This indeed affected synergy and redundancy in the hypothe-

sized way. For cell pairs with originally similar preferred direc-

tions, redundancy was turned into synergy, consistent with the

now opposing preferred directions (Figure 4F, left). For direction-

selective cell pairs with different preferred directions, on the

other hand, synergy was essentially abolished by flipping one

cell’s preferred direction (Figure 4F, right). Note, though, that

for such cell pairs preferred directions were originally not diamet-

rically opposing but rather separated by about 120� so that, after

the switch, there was still an angular difference of about 60�. This
explains why the effect is smaller than for cell pairs with the

same preferred direction. These results demonstrate that the

observed synergistic population readout arises from how indi-

vidual direction-selective cells encode complex texture motion.

Individual Direction-Selective Cells ShowAmbiguities in
Direction Encoding
To better understand the response characteristics of individual

direction-selective cells under complex texture motion, we

analyzed their responses in the framework of the linear-nonlinear

(LN) model. This model relates the incoming stimulus—here, the

random sequences of motion steps in x and y direction—to the

firing rate of a neuron by first convolving the stimulus with a linear

filter and then applying a nonlinear transformation (the model’s

‘‘nonlinearity’’) to obtain a firing rate. For theGaussianwhite-noise
Neuron 101, 963–976, March 6, 2019 967



Figure 5. Non-monotonic Motion-Response

Relations Can Induce Synergy for Cell Pairs

with Opposing Directional Preference

(A and B) STAs in x and y direction (A) and non-

linearities (B) of two direction-selective cells. Insets

show directional tunings to drifting gratings.

(C) U-shape index of nonlinearities of the same 149

cells as in Figure 1D. Boxes and horizontal lines

indicate IQR and median, respectively; values

within 1.53 IQR and outliers beyond are indicated

by a vertical line anddots, respectively. Inset shows

schematic of U-shape index calculation.

(D) Conditional texture STAs for non-preferred (left)

and preferred motion trajectories (right) of same

cells as in (A).

(E) Histograms of contrast biases of conditional

texture STAs for non-preferred (left) and preferred

motion trajectories (middle) and of angular differ-

ences (right) between the preferred direction of a

cell and the vector connecting the negative peaks in

the two conditional texture STAs. Data are from 10

retinas and 102 cells.

(F) LN model for simulating responses of cell pairs,

using one-dimensional stimulus filters from cells in

(A) and either monotonic (green) or U-shaped

nonlinearities (purple), both obtained from fits to

measured nonlinearities that correspond to one-

dimensional motion (Figure S2). Spike trains were

generated by a Poisson process.

(G) Information from pair responses (solid line)

was decreased for monotonic nonlinearities (left)

and increased for U-shaped nonlinearities (right)

compared to summed single-cell information

(dashed line), indicating redundancy and synergy,

respectively.

(H) Boxplots as in (C) of information ratios and

response correlations from 1,000 simulation

runs. For model of two-dimensional motion, see

Figure S2.
statistics of the motion steps applied here, the cell’s motion STA,

as measured in Figure 1B, can be used as the filter of the LN

model (Chichilnisky, 2001). Note that the separately displayed

STAs for x and y direction (Figure 5A) correspond to two compo-

nents of a single stimulus filter. The nonlinearity can then be

obtained by applying this filter to the stimulus and compiling a

histogram of the average measured firing rates for given ranges

of the filter output (Figure 5B).

Surprisingly, we found that direction-selective cells had non-

monotonic, U-shaped nonlinearities in their response to complex

texture motion (Figures 5B and 5C). This means that direction-

selective cells do not only show responses to motion into their

preferred direction but also respond to motion stimuli in the

opposite direction, which corresponds to the null direction under

drifting gratings. Thereby, the encoding ofmotion direction by in-

dividual direction-selective cells during complex texture motion

is ambiguous. We quantified the degree of non-monotonicity of

direction-selective cells by introducing a U-shape index, which

is negative for monotonic nonlinearities and positive for a non-

monotonic U-shape. The U-shape index was generally larger

than zero, indicating that nonlinearities were often non-mono-

tonic (Figure 5C; Wilcoxon signed-rank test: p < 10�3). We also

analyzed how responses of direction-selective cells were
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affected by motion orthogonal to the preferred direction and

found that such motion modulates the firing rate via an approx-

imately symmetric U-shaped nonlinearity (Figure S2). Thus,

motion in any direction in the two-dimensional plane can activate

the direction-selective cell to some extent.

To investigate the origin of the U-shaped nonlinearities, we

asked whether the OFF-type contrast sensitivity of the cells

was relevant for responses both to motion in the preferred as

well as in the non-preferred direction or whether responses to

non-preferred motion rather involved ON-type contrast signals,

which could be consistent with specific models of direction

selectivity (Behnia et al., 2014; Clark et al., 2011). We therefore

computed STAs of the spatial stimulus patterns separately for

spikes associated with preferred and non-preferred motion,

that is, spikes contributing to the right and left portions of the

U-shaped nonlinearities, respectively. Although these condi-

tional STAs exhibit considerable structure inherited from the cor-

relations in the textured stimulus, we found that a prominent dark

spot typically appeared near the cell’s receptive field in both

cases (Figure 5D). The exact location of the dark spots relative

to the receptive field outlines seems to be somewhat variable,

owing to stochastic noise both in the estimation of the condi-

tional STA and in the receptive field location. Nonetheless, a



systematic spatial arrangement of the dark spots can be

deduced from their relative positions: we found that, compared

to the dark spot for the preferred direction, the location of the

spot for the non-preferred direction was generally shifted along

the cell’s preferred direction (Figure 5E). This indicates that it is

dark spots starting to enter the receptive field from either side

that are responsible for the two arms of the U-shaped nonlinear-

ities, in line with the OFF-type contrast sensitivity of these cells.

Opposing Direction Preferences and U-Shaped
Nonlinearities Can Induce Synergy
We hypothesized that the ambiguity in the single-cell encoding

of motion direction represented by the U-shaped nonlinearity is

critical for the observed synergy in populations of direction-

selective cells. To test this hypothesis, we simulated the re-

sponses for a pair of direction-selective cells with an LN model,

allowing us to alter the shape of the nonlinearity. The goal of the

model was to investigate how this shape may affect the decod-

ing of a stimulus parameter from cell pairs with opposite tuning.

Thus, rather than describing how a cell might respond to motion

as well as luminance signals in the texture, we used a phenom-

enological model in which, for simplicity, the only input was a

sequence of motion steps in one dimension. The two modeled

cells independently filtered the sequence with opposing filter

shapes, taken from the experimentally obtained motion STAs

(Figure 5A). The filtered signals were transformed into firing rates

by applying the same nonlinearity for both cells, which was either

monotonic or U-shaped (Figure 5F). Spikes were then generated

by a Poisson process.

Trajectory reconstructions and information ratios were ob-

tained in the same way as for the experimental data. We found

that the shape of the nonlinearity indeed has a strong effect. For

monotonic nonlinearities, the information obtained by the two-

cell decoder is reduced compared to the sum of single-cell infor-

mation values, whereas for U-shaped nonlinearities, the informa-

tion from the two-cell decoder is relatively increased (Figures 5G

and 5H). This also holds for a model of two-dimensional motion

(Figure S2). Thus, non-monotonic U-shaped nonlinearities of

stimulus encoding can turn an otherwise redundant readout

from cell pairs into a synergistic readout. An essential component

for this synergy is that information transmission of single cells is

compromised by the U-shaped nonlinearity, yielding information

values about three times smaller than in the case of themonotonic

nonlinearities. This provides the opportunity for synergistic im-

provements through the multi-cell decoder by resolving the

single-cell ambiguities.

Response Correlations from Shared Local Visual
Stimulation Enhance Synergy
The U-shaped nonlinearities may also explain the positive corre-

lations between direction-selective cells with different preferred

directions (Figure 4A). The non-monotonic shape indicates that

strong motion signals, regardless of direction, tend to increase

the activity of all direction-selective cells, leading to some level

of co-modulation. Indeed, the investigated models show that

U-shaped nonlinearities can induce positive response correla-

tions (Figures 5H and S2D). Essentially, this co-modulation

occurs because strong motion signals provide the potential
for simultaneous darkening of different receptive fields (Figures

5D and 5E). Yet, for two given cells, only some of these

motion events will provide actual darkening for both receptive

fields, which limits the strength of the positive correlations. If,

however, the two receptive fields are close to each other or

even overlapping, they should experience similar patterns of

brightening and darkening, which should then strengthen the

cells’ correlations.

Indeed, we found that the positive response correlations were

particularly pronounced for pairs of direction-selective cells

whose receptive fields were spatially close to each other (Fig-

ure 6A). For cell pairs with the same preferred direction, stronger

positive correlations generally led to more pronounced redun-

dancy (Figure 6B). This is expected because the correlations

imply that cells respond to the same parts of the stimulus trajec-

tory. However, in contrast to this expectation, cell pairs with

different preferred directions displayed larger synergy when their

responses were more strongly correlated (Figure 6B). It follows

that synergy is particularly strong for cell pairs with different

preferred directions and nearby receptive fields (Figure 6C).

In order to test whether the elevated correlations of nearby di-

rection-selective cells resulted from experiencing nearby parts

of the texture, we aimed at creating a virtual shift of individual

receptive fields: we repeated a 15-min trajectory with different

spatial offsets (Figure 6D) and compared the normal trajectory

reconstruction to a reconstruction where responses of different

cells were taken from different, spatially offset trials. For a sam-

ple set of three cells with different preferred directions and

strongly overlapping receptive fields, we found that this virtual

receptive field shift considerably reduced the originally large

synergy but did not abolish it completely (Figure 6E). In fact,

the synergy of this sample set was now in a similar range as

for three sample cells whose receptive fields were distant from

each other (Figure 6F). For this second sample set, the original

synergy was much smaller, but was not further reduced by the

spatial offset. These findings were corroborated by population

analysis of cell pairs (Figure 6G). The spatial offset abolished

the effect that particularly strong correlations and synergy

occurred for nearby direction-selective cells but otherwise had

little effect on the baseline of correlations, synergy, and

redundancy. This indicates that the elevated correlations and

synergy values of nearby direction-selective cells indeed result

from shared local stimulation, so that motion-induced luminance

changes inside the two receptive fields are correlated in sign and

strength.

Direction-Selective Cells with Different Preferred
Directions Are Anti-correlated in Their Motion-
Response Patterns
The contrast-induced co-modulation of activity might conceal

correlations that are linked to motion direction. We therefore

analyzed how the joint responses of pairs of direction-selective

cells are related to sequences of motion steps by applying

canonical correlation analysis (CCA) (Hotelling, 1936). CCA can

be viewed as an extension of standard reverse-correlation

techniques by correlating stimulus features with more complex

response patterns than single spikes, including patterns

extended over time and over multiple cells. The technique
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Figure 6. Response Correlations in Pairs of

Direction-Selective Cells Enhance Synergy

and Redundancy in Motion Decoding

(A–C) Relations between response correlation and

receptive field distance (A), between information

ratio and response correlation (B), as well as be-

tween information ratio and receptive field dis-

tance (C) for cell pairs with different (black) or

same preferred directions (gray).

(D–G) Influence of local stimulus structure on

population decoding.

(D) Schematic of ‘‘offset shuffling.’’ Information

ratios and response correlations were either ob-

tained from cell responses within the same trial

(same) or different trials with different offsets

(‘‘offset shuffled’’).

(E and F) Examples of mean information ratios and

SDs obtained over all trial combinations of three

direction-selective cells with different preferred

directions with nearby (E) or distant receptive

fields (F).

(G) Same as (A)–(C) but from offset shuffled trials.

Data points represent mean over all trial combi-

nations. Data are from 5 retinas, 92 cells, 315 pairs

with same and 407 pairs with different preferred

directions.
identifies combinations of response patterns and corresponding

stimulus features that are most strongly correlated with each

other (Macke et al., 2008).

To identify responsepatterns thatbestcorrelatewithmotionsig-

nals of the applied moving texture, we used 2-s-long segments of

the motion trajectory together with the corresponding responses,

composed of the spiking activity of two direction-selective

ganglion cells over the 2 s. CCA then provided an array of motion

trajectory segments and corresponding response components of

the two cells, ordered by the strength of their correlation (see Fig-

ures 7A and 7B for two examples). For a sample pair of direction-

selective cells with different preferred directions (Figure 7A), the

stimulus-response correlations were strongest for sustained

texture motion either in the negative x direction and positive y

direction or vice versa, as the overall sign of the obtained compo-

nents is undetermined. The corresponding response component

shows that, depending on the actual direction of this motion

component, either one or the other of the two cells responded

with increased activity. Thus, this motion component was in fact

associated with anti-correlated activity of the two cells. Similarly,

the next four response components, which corresponded to

motion at higher temporal frequencies, were characterized by

anti-correlated activity at those higher frequencies. For a sample

pair of direction-selective cells with the same preferred direction,

on the other hand, the response components that were most

strongly related to motion components all showed positively

correlated activity patterns (Figure 7B).
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Population analysis corroborated

these findings. For each recorded pair

of direction-selective cells, we selected

the first five response components ob-

tained byCCA and computed the correla-
tion between the activity profiles of the two cells. For cell pairs

with different preferred directions, this revealed strongly nega-

tive correlations in the response patterns of the two cells,

whereas for cell pairs with the same preferred direction, the

responsepattern correlationswere generally positive (Figure 7C).

Furthermore, the largest synergy values occurred for cell pairs

with particularly strong negative correlations in the first response

component of the CCA (Figure 7D).

The anti-correlated activity patterns of the CCA for cell pairs

with different preferred directions might appear to be at odds

with the overall positively correlated activity (Figures 4A and 6A).

However, the CCA identifies such response patterns that are

associated with specific motion features. Thus, we can interpret

the overall positive spike correlations as resulting from common

activation by luminance signals, which can occur unspecifically

for motion in any direction; specific motion sequences, on the

other hand, are represented by response patterns that are anti-

correlated between cells with different preferred directions.

A Subtractive Code of Direction-Selective Cells with
Different Preferred Directions Shows Synergy along
the Axis of Motion Opponency
The finding that cell pairs with different preferred directions

show positive overall activity correlations but negative correla-

tions in their motion-related response components suggests

that a good readout strategy for motion information might be

to subtract the activity of the two cells. This should reduce



Figure 7. Motion-Related Responses of Cell Pairs with Different Preferred Directions Are Anti-correlated

(A and B) Canonical correlation analysis (CCA) of responses from sample pairs with different (A) or same preferred directions (B). (Top) Correlation coefficients of

CCA (left) and cell properties (right) are shown. (Below) First five CCA stimulus components (left), their projection onto x-y plane (middle, red arrows indicate first

motion step), and corresponding response components (right, colors indicate cells above) are shown.

(C) Boxplots of correlation coefficients of first five response components of all pairs with different (top) or same preferred directions (bottom). Boxes and

horizontal lines indicate IQR and median, respectively; values within 1.5 3 IQR and outliers beyond are indicated by a vertical line and dots, respectively.

(D) Correlation coefficients of first response component in relation to information ratios of pairs with different (black) or same preferred direction (gray). Data are

from 10 retinas, 198 cells, 462 pairs with same and 736 pairs with different preferred directions.
the activity induced by common contrast changes and highlight

the motion-related activity. For cell pairs with the same

preferred direction, on the other hand, the sum rather than

the difference should be informative about the motion trajec-

tory, because such cells showed positive correlations in the

CCA response components. Note, however, that the summed

activity does not help disambiguate motion-related from

contrast-related responses; thus, no synergy is expected

from summed responses.
The sum or difference of two spike trains reduces the joint

response patterns to a single activity sequence. To test whether

such a reduced code could capture the transmitted information,

we analyzed linear decoders that take as input either the differ-

ence or sum of the binned spike counts of two cells. For a

sample cell pair with different preferred directions (Figure 8A),

a subtractive code led to information rates that were larger

than the summed single-cell information rates (Figure 8C, right),

thus capturing the synergistic decoding of the original two-cell
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Figure 8. Subtractive Code of Cell Pairs with Different Preferred Directions Captures Synergy

(A and B) Population codes for sample pairs with different (A) or same preferred directions (B). (Left) Receptive fields, preferred directions, and pair filters are

shown. (Right) Information spectrum of the population code (solid line) compared to the summed single-cell information spectra (dashed) is shown.

(C) Subtractive code of cells in (A). Response filter and nonlinearity (left) as well as information spectrum (right) of subtractive code (orange), together with

nonlinearities and summed information from single-cell responses (dashed) are shown.

(D) Same as (C) but for summed responses (blue) of cells in (B).

(E and F) Information ratios as boxplots (left; horizontal line: median, box: IQR, vertical line: values within 1.5 x IQR, dots: outliers beyond 1.53 IQR) and binned

by receptive field distance (right; thick line indicating mean; shaded region SD) from pair responses (black); subtractive code (orange); subtractive code along

either x or y direction, depending on which showed greater motion opponency (red); and additive code (blue) for cell pairs with different (E) or same preferred

directions (F). Data are from same pairs as in Figures 7C and 7D.
decoder (Figure 8A). Furthermore, the nonlinearity of an LN

model for the response difference turned out to be monotonic

(Figure 8C, left), indicating that the ambiguities of motion decod-

ing reflected in the U-shaped nonlinearities of individual cells

were resolved by using the response difference. For a sample

pair of direction-selective cells with the same preferred direction,

on the other hand, we found that the additive code had a similar

performance as the two-cell decoder (Figures 8B and 8D).

These findings were corroborated by population analysis (Fig-

ures 8E and 8F). For cell pairs with different preferred directions,
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the subtractive code (Figure 8E, orange) generally captured a

large portion of the information contained in the joint response

patterns, whereas the additive code (Figure 8E, blue) was

considerably worse. Note that the somewhat reduced perfor-

mance of the subtractive code compared to the two-cell

decoder is expected because the two preferred directions are

generally not diametrically opposed but separated by only about

120�. Thus, there is a motion axis for which the two cells had

common directional preference, and the subtractive code should

be deleterious along this axis. However, when focusing the



analysis on a one-dimensional motion axis for which two cells

had opposed preference (Figure 8E, red), the performance of

the subtractive code again reached similar levels of synergy as

the full two-cell decoder. For cell pairs with the same preferred

direction (Figure 8F), on the other hand, it was the additive

code that performed as well as the joint responses.

DISCUSSION

Neurons in the visual system are often regarded as feature en-

coders whose responses are tuned to the strength of a certain

visual feature appearingwithin a cell’s receptive field. During nat-

ural viewing, however, there may be multiple features that simul-

taneously affect a cell, e.g., contrast, spatial pattern, motion

speed, and direction (Deny et al., 2017; Im and Fried, 2016).

Here, we asked how information about a single feature, motion

direction, can be extracted from the multiplexed signaling of

direction-selective retinal ganglion cells under complex visual

stimulation. Information about motion direction is vital for stabi-

lizing the gaze during natural viewing (Simpson, 1984; Yonehara

et al., 2016) and for coping with motion-induced image blurring

under fixational eye movements (Pitkow et al., 2007; Rucci

et al., 2007). For such tasks, the neural code for motion direction

should ideally not be influenced by other stimulus components,

such as the spatial pattern of the moving scene. Direction-

selective ganglion cells, however, are not only tuned to motion

direction but concurrently respond to luminance changes in

their receptive fields, which complicates the readout of motion

direction from individual cells.

Synergistic Motion Readout Is Based on Resolving
Ambiguities in Stimulus Encoding
We found that the readout of motion direction from individual di-

rection-selective cells under complex texture motion is ambig-

uous; spikes could either signify motion into the preferred

direction or preferred contrast brought into the receptive field.

Hence, for separating information about motion direction and

contrast, signals from further cells are required (da Silveira and

Berry, 2014). A cell with a different preferred direction will then

not only contribute information about its own preferred direction

but also provide additional information by separating motion

from contrast signals. This additional information leads to the

observed synergy in the readout from cells with different

preferred directions.

The underlying mechanism for this synergy is that, during

periods of co-activation of two cells, their activity difference

extracts motion-related information by reducing the effect of

confounding luminance-triggered signals. The co-activation is

stochastic for cell pairs with distant receptive fields but be-

comes more systematic and stronger for nearby cells, which

makes the cancelation of these luminance signals more effec-

tive and can thereby lead to stronger synergy. Interestingly,

this mechanism is similar to a phenomenon known as the

‘‘sign rule,’’ which states that noise correlations have beneficial

effects on decoding when they have opposite sign compared

to the signal correlations (Averbeck et al., 2006; Hu et al.,

2014; Jeanne et al., 2013; Oram et al., 1998; Panzeri et al.,

1999). In the present case, motion direction is signaled by the
spiking difference of two neurons (negative signal correlations),

and therefore, co-modulation of their signaling (positive ‘‘noise’’

correlations) would increase the reliability of the signal readout.

And although actual noise correlations do not play a role here,

the contrast-induced activity essentially acts as noise in the

context of motion decoding. In accordance with the sign rule,

the co-activation has a beneficial effect on decoding the nega-

tively correlated motion signals of cells with different preferred

directions and a negative effect on decoding the positively

correlated motion signals of cells with the same preferred

direction.

We here used an optimal linear decoder (Warland et al., 1997)

to estimate motion direction from the cells’ responses. The

decoder recovers a linear filter for each cell, which can be re-

garded as the encoded feature. In this way, strong responses

correspond to more of this feature and weaker responses corre-

spond to less of it. This resembles our general intuition of how a

feature encoder provides information about the corresponding

feature.

What are the limiting factors for the reconstruction perfor-

mance and the retrieved information rates? First, the low-pass

filtering of the cells does not allow for reconstruction of high-

frequency components of the trajectory. Second, motivated by

the scenario of fixational eye movements, the jittering trajectory

has relatively small net-motion, typically translating the texture

by only around 150 mm per second. This is less than half the

typical receptive field diameter of the investigated cells (K€uhn

and Gollisch, 2016), providing for a challenging reconstruction

task. Finally, and most importantly, the retrieved information

rates are curtailed by the observed inherent coding ambiguity

with respect to motion direction. The U-shaped nonlinearities

limit the directional information, as can be seen by the three-

fold larger single-cell information rates of a comparable model

with monotonic nonlinearities (Figure 5G). Note also that the

decoder reflects how spikes represent motion direction but

does not aim at capturing all of the information in the spike trains

about the stimulus. For example, a completely symmetric nonlin-

earity would lead to zero information retrieved from the linear

reconstruction. This would be consistent with the complete

lack of any directional information, but spikes would still be infor-

mative about whether or not substantial motion occurred in any

direction.

Alternative decoders, for example based on maximum likeli-

hood or Bayesian approaches, which have been used for de-

coding the motion direction of uniformly drifting bars (Fiscella

et al., 2015; Pouget et al., 2000; Zylberberg et al., 2016), might

retrieve larger information values. Interestingly, however, it has

been suggested that the decoding performance of these

models is similar to an optimal linear decoder for drifting bar

stimuli (Fiscella et al., 2015). Nonlinear extensions of the

optimal linear decoder, using regularization in the filter estima-

tion (Botella-Soler et al., 2018; Maheswaranathan et al., 2018;

Marre et al., 2015), might also improve the performance of both

single-cell and population readout. Nevertheless, these exten-

sions by themselves will not resolve the ambiguities about

motion and contrast information contained in the single-cell re-

sponses, as these are a generic feature of how the direction-

selective ganglion cells respond to complex texture motion.
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Population Signals May Allow Purpose-Related Feature
Readout in Different Projection Areas
Direction-selective ganglion cells are thought to contribute essen-

tial information about eye and head movements to downstream

brain areas. In mice, they are known to project to different target

regions in the brain, e.g., the nodes of the accessory optic tract,

superior colliculus, and lateral geniculate nucleus (Dhande et al.,

2013, 2015; Gauvain and Murphy, 2015). Because individual

retinal ganglion cells often have more than one projection target

(Ellis et al., 2016), each direction-selective ganglion cell might

contribute to multiple readout schemes so that different features

can be extracted from their multiplexed signaling.

For pairs of direction-selective cells with different preferred

directions, we found that motion encoding ambiguities can be

largely resolved by decoding their spiking difference. For a bio-

logical implementation of such a subtractive-code readout, a

downstream neuron would simply have to receive excitation

from one direction-selective cell and inhibition from the other.

Such a circuit had already been proposed by Levick et al.

(1969) as a way to sharpen directional tuning. Because retinal

ganglion cells are generally excitatory, inhibition should come

through a downstream interneuron, which would then also be di-

rectionally tuned. Indeed, the optic tectum of zebrafish was

found to contain two populations of oppositely tuned direction-

selective neurons, which receive excitatory as well as inhibitory

directionally tuned inputs (Gabriel et al., 2012). The excitatory

inputs originated from direction-selective retinal inputs to the

superficial layers of the tectum. The inhibitory inputs seemed

to emerge from direction-selective neurons of the other tectal

population and were tuned to non-preferred directions of their

recipient neurons. For the applied drifting bars, the inhibitory in-

puts appeared to have little effect on the directional tuning of the

tectal neurons. Yet, based on our findings here, we predict that,

during more complex visual motion stimulation, the inhibition

should cancel contrast-induced activity and thus provide a

more direct representation of motion direction.

An additive code of direction-selective ganglion cells, on the

other hand, might be implemented in the mouse lateral genicu-

late nucleus, where neurons have been found that receive direct

input from several direction-selective ganglion cells (Rompani

et al., 2017). This additive code might contribute to separating

the global motion signal in the visual stimulus from local image

information. Hence, depending on the biological implementation

of signal integration in the corresponding target area, diverse

features can be read out from the joint signals of multiple direc-

tion-selective retinal ganglion cells.

For direction-selective ganglion cells with different preferred

directions, we have here considered a two-cell subtractive

code. Yet, it is straightforward to extend this decoding scheme

to more neurons, in particular, for taking into account the three

groups of different preferred directions. Analogous to a popula-

tion-vector-type readout (Georgopoulos et al., 1986; Salinas and

Abbott, 1994), motion information about an arbitrary direction

could be extracted by weighing each cell’s activity with the

cosine of the angular difference between the direction of interest

and the cell’s preferred direction. Effectively, the three groups of

different preferred directions in this system of direction-selective

ganglion cells can thus be considered as a minimal set required
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for disentangling the three stimulus variables that affect the cells’

responses, namely motion in x direction, motion in y direction,

and local luminance changes.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiments were performed on 10 isolated whole-mount retinas from 7 healthy adult salamanders (Ambystoma mexicanum, pig-

mented wild-type, undetermined sex) of at least 12 months of age (exact ages unknown, birthdates not specified by supplier).

Animals were housed on a 12-hour light-dark cycle in standard aquarium basins (1-2 animals per basin), equipped with burrow-

like hide-out places and with constant water filtering, and were fed daily. Experimental procedures were in accordance with national

and institutional guidelines and approved by the institutional animal care committee of the University Medical Center Göttingen

(protocol number T11/35).
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METHOD DETAILS

Electrophysiology
After an hour of dark-adaption, animals were sacrificed and eyes enucleatedwhile keeping track of the eye’s orientation relative to the

body as described previously (K€uhn and Gollisch, 2016). Eyes were hemisected along the edge of the cornea, the vitreous humor

removed, and the retinas separated from the eyecups while keeping track of their orientation. The pigment epithelium was peeled

off, and the retina wasmounted onto a semipermeablemembrane, stretched across a circular plastic holder, with the photoreceptors

facing the membrane. Membrane and retina were positioned onto a multielectrode array (MEA; Multichannel Systems, Reutlingen,

Germany; 252 electrodes; 30 mm electrode diameter; 100 mm minimal electrode distance) such that retinal ganglion cells faced the

electrodes of the MEA and upward motion of projected visual stimuli would later correspond to motion in the dorsal direction on the

retina. Dissection and mounting were performed under infrared light on a stereo-microscope equipped with night-vision goggles.

During recordings and dissection, the retina was superfused with oxygenated (95% O2, 5% CO2) Ringer’s solution, containing

110 mM NaCl, 2.5 mM KCl, 1 mM CaCl2, 1.6 mMMgCl2, 22 mM NaHCO3 and 10 mM D-glucose, pH 7.4, at a constant temperature

of around 21�C. Voltage signals of retinal ganglion cells were recorded with 10 kHz sampling rate and band-pass filtered between

300 Hz and 5 kHz. Spikes were sorted offline with custom-made software, based on a Gaussian mixture model (Pouzat et al.,

2002). As all animals in this study were from the wild-type group, no measures of experimenter ‘‘blinding’’ or randomization of

subjects were applied. Experiments were replicated on multiple retinas (as reported in figure legends) with numerous individual

recorded cells each. No prior sample-size estimation was performed.

Visual stimulation
Retinas were visually stimulated with a gamma-corrected monochromatic white OLEDmicrodisplay (eMagin, Bellevue, Washington,

USA) with 8003 600 square pixels and 60 Hz refresh rate. Stimuli were projected through a telecentric lens (Edmund Optics, Karls-

ruhe, Germany) onto the retina. All projected stimuli were of 6.33 mW/m2 mean irradiance (low photopic light level), and pixels

measured 7.5 3 7.5 mm2 on the retina. Stimuli were generated through custom-made software, based on Visual C++ and OpenGL.

QUANTIFICATION AND STATISTICAL ANALYSIS

Receptive field properties
We used a spatiotemporal white-noise stimulus consisting of a checkerboard layout with 80x60 individual squares of 75 mm edge

length to estimate the receptive field of a cell. Each square was randomly set to black or white (100% contrast) with a probability

of 50% each and an update rate of 30 Hz. We obtained the spatiotemporal filter for each cell by calculating the spike-triggered

average (Chichilnisky, 2001) and then used singular-value decomposition to separate the spike-triggered average into a

spatial and a temporal receptive field component (Wolfe and Palmer, 1998). Cells with a low average firing rate for this stimulus

(< 0.3 Hz) were not considered here. Spatial receptive fields were fitted with a two-dimensional Gaussian and represented by

ellipses corresponding to the 1.5-SD contour of the Gaussian fits. The distance between the receptive fields of two cells was deter-

mined as the distance between the center points of the Gaussian fits.

Classification of standard direction-selective ganglion cells
We used drifting square-wave gratings of 100% contrast, 600 mm spatial period, and a temporal frequency of 0.75 Hz to identify

direction-selective cells (K€uhn and Gollisch, 2016). Gratings were shown in a sequence of eight equidistant directions with 6.67 s

per direction, separated by 1.67 s of a gray screen (homogeneous illumination at mean intensity). The sequence was repeated

five times. A direction-selectivity index (DSI) was calculated from the spike counts fq in response to the eight directions q, leaving

out the onset response to the first second of each direction, such that:

DSI=

��P
qfqe

iq
��P

qfq

Cells with DSI > 0:3 and a mean firing rate above 1 Hz for this stimulus were considered as direction-selective cells. The preferred

direction of each direction-selective cell is then given by the angle of
P

qfqe
iq.

Furthermore, we focused on direction-selective cells that responded well to global motion rather than on object-motion-sensitive

direction-selective cells, which represent a second class of direction-selective cells in the salamander retina (K€uhn and Gollisch,

2016). To distinguish these cell classes, we applied a stimulus consisting of circular patches of 750 mm diameter, arranged in a

hexagonal pattern on a mean-luminance background. The patches contained square-wave gratings of 300 mm period (cf. K€uhn

and Gollisch, 2016), which were jittered by selecting motion steps of 15 mm randomly to either side at 30 Hz. Stimulus

segments of 23.33 s were presented repeatedly, separated by 1.67 s of gray screen, with all gratings jittering either coherently

with the same trajectory or with independent, differential trajectories for each patch. An object-motion-sensitivity index

OMSI= ðfd � fcÞ=ðfd + fcÞ was calculated from the spike counts in response to coherent and differential motion, fc and fd,

respectively. Direction-selective cells with OMSI < 0:7 and a mean firing rate above 1 Hz for this stimulus were considered not to
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be object-motion-sensitive and therefore to belong to the class of standard direction-selective cells (simply referred to as direction-

selective cells in this work) and used for further analysis.

To determine which pairs of direction-selective cells had the same or different preferred directions, we first grouped the cells

of each experiment into three groups based on their preferred direction (temporal, nasal-dorsal, and nasal-ventral, see Figure 2E)

such that cells belonging to the same group or different groups were assumed to have same or different preferred directions,

respectively. This was achieved by making use of the known orientation of the retina on the MEA and by determining the angle of

the preferred direction relative to the nasal direction. Here, positive angles were defined in counterclockwise direction for the left

eye and clockwise direction for the right eye when looking onto the photoreceptor side of the retina. Cells were then grouped into

nasal-dorsal, temporal, and nasal-ventral groups, based on whether their preferred direction was between 0� and 120�, 120� and
240�, or 240� and 360�, respectively.

Contrast tuning
We tested the cells’ tuning to contrast by applying two full-field stimuli. First, we used flashes of 500 ms of increased or decreased

light level at 40% frommean luminance, interleaved by 1.5 s of mean luminance. To assess the degree of ON versus OFF responses,

an ON-OFF index was calculated from the spike counts fon and foff , measured in a time window of 50 to 550 ms after the onset of the

ON- and OFF-flash, respectively, such that the ‘‘Flashes ON-OFF Index’’ is ðfon � foff Þ=ðfon + foff Þ. Here, cells with a mean firing rate

below 1Hz for this stimulus were excluded, leading to 159 of 198 included cells from 10 retinas. Second, a temporal Gaussian-distrib-

uted white noise stimulus with standard deviation at 30% of mean luminance and 30 Hz update rate was used to calculate a spike-

triggered average (STA). A ‘‘Flicker ON-OFF Index’’ was determined by summing the values of the last 200 ms of the STA prior to

spiking and normalizing by the sum of the absolute values of the STA in this range, yielding an ON-OFF index in the range

from�1 (pure OFF-peak) to 1 (pure ON-peak). Cells were only included if the absolute peak was seven times larger than the standard

deviation of the STA tail (800 to 500 ms before spike), leading to 143 of 198 included cells. We furthermore assessed the contrast

sensitivity by computing the nonlinearity of a linear-nonlinear (LN)model that takes the STA as the linear filter (details as in the analysis

of motion trajectory encoding, see ‘‘LN model’’ below).

Complex texture motion
To probe the motion encoding of direction-selective cells for complex texture motion, we used a correlated noise texture, shifted in a

two-dimensional random walk. The standard texture was generated from a white-noise pattern of black and white 30 3 30 mm2

squares (100% contrast) that was smoothed with a two-dimensional Gaussian kernel of 60 mmSD. The contrast values of the texture

were then scaled by a factor of 1.5, with brightness values clipped at the maximum and minimum brightness of the screen. Textures

were shifted every 33 ms in x- and y-direction with independent Gaussian-distributed motion steps of s= 22.5 mm SD, which were

rounded to multiples of 7.5 mm (the resolution of the screen).

In some experiments, we also applied two natural textures (Figure 3A) from theMcGill CalibratedColor ImageDatabase (Olmos and

Kingdom, 2004), converted to grayscale by averaging the color channels (Liu et al., 2017), and a pink-noise texture with a 1/f spatial

frequency spectrum. Pixel values for all textures were adjusted to the same mean intensity and SD as the standard texture and were

shifted according to the same trajectory. In initial trial experiments, we also tested different motion step sizes and sizes of image blur.

We found that with step size and blur reduced by a factor of two, direction-selective cells had low firing rates and could not provide

information about themotion trajectory, probably due to their inability to resolve these fine spatial scales. Increasing step size and blur

by a factor of two produced similar results in terms of correlations and information rates as obtained with the standard texture.

Mathematically, the motion trajectory can be denoted as a matrix

S=

0BB@
sx1 sy1
sx2 sy2
« «

sxM syM

1CCA
of motion steps in x- and y-direction, sxj and syj, respectively, during time interval j of length Dt = 33 ms. M denotes the number of

presented stimulus frames, depending on the length of the recording. The stimulus was usually presented for 30 to 40 min. In exper-

iments where the effect of noise correlations was investigated, a 15-min trajectory was repeated 5 times. In experiments where we

aimed at removing correlations from shared local contrast signals, the 15-min trajectory was repeated 7 or 9 times, with odd

trials using the standard stimulus and even trials applying a texture layout that was translated by 1.5 mm in positive or negative x-

or y-direction relative to the standard stimulus (cf. Figure 6D).

Directional preference under complex texture motion
In order to assess whether direction-selective cells responded in a direction-selective fashion to complex texture motion, we deter-

mined the average motion trajectory that elicited a response by calculating the spike-triggered average (STA) of the motion steps

within an interval of LDt = 800 ms prior to spiking (Chichilnisky, 2001). This is usually done by multiplying the sequences of motion

steps with the spike counts of the following time bin and normalizing the summed sequences by the overall number of spikes.
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Equivalently, to facilitate later analyses, we here arranged the motion steps into a matrix Sseg of trajectory segments of length L and

binned responses in accordance with the motion steps, providing a response vector f:

Sseg =

0@ sx1 / sxL sy1 / syL
« « « «

sxM�L / sxM�1 syM�L / syM�1

1A; f =

0@ fL+ 1

«
fM

1A
where the elements fj ðj = 1;.;M� LÞ were the spike counts during time interval j + L of length Dt = 33 ms. The STA was then deter-

mined as the spike-count-weighted average of the trajectory segments, normalized by the total number of spikes

a=ST
seg$f

,X
j

fj =
�
axL / ax1 ayL / ay1

�T
where the axj and ayj were the average motion steps in x- and y-direction, respectively, in the jth time interval prior to spiking. The

preferred direction for complex texture motion was determined by summing the STAs in x- and y-direction, vx =
P

jaxj and vy =P
jayj, resulting in a direction vector v. The angle of this vector then provided an estimate of the preferred direction.

Furthermore, we tested whether the motion STAs indicated a directional preference. Without direction preference, motion

STAs should average out to zero, except for noise originating from limited sampling. We therefore compared the magnitude of

the STA, given by the norm ja j , to the distribution of STA magnitudes of shuffled data, obtained by 1000 random shuffles of the

spike times of the analyzed cell over the recording duration. An STA was considered significant if its magnitude was larger than

95% of the magnitudes from corresponding shuffled data.

Linear multi-cell decoder
We used a linear multi-cell decoder as introduced byWarland et al. (1997) to reconstruct the applied stimulus from the responses of a

neuronal ensemble. In our case, the stimulus is given by the random motion steps in x- and y-direction, and responses are the spike

trains of individual direction-selective cells ðn= 1Þ or of populations of up to n= 30 direction-selective cells. First, spike counts f ij of

neuron i during time interval j were binned in accordance with the stimulus update rate and organized in a matrix, where each row

contains the response sequences of all neurons for a time window of LDt = 800 ms and different rows correspond to different, over-

lapping time windows:

Fseg =

0BB@
1 f11 f12 / f1L / fn1 / fnL
1 f12 f13 / f11+ L / fn2 / fn1+ L

1 « « « « «
1 f1M f1M+ 1 / f1M+ L / fnM / fnM+ L

1CCA
We calculated independent linear filters in x- and y-direction, bx and by, respectively, by convolving stimulus and response of the

first 70% of the trajectory, F 0T
seg S

0, which was corrected by the pairwise correlations between cells, F 0T
seg F

0
seg, resulting in a popu-

lation filter

B=
�
F 0T

seg F
0
seg

��1

,
�
F

0 T
seg S

0
�
=

�
bx0 b1

x1 b1
x2 / b1

xL / bn
x1 / bn

xL

by0 b1
y1 b1

y2 / b1
yL / bn

y1 / bn
yL

�T

:

For cross-validation, a reconstruction of themotion steps in x- and y-directionU =F 0 0
seg,Bwas determined from the responses F 0 0

seg

to the remaining 30% of the stimulus. For illustrations, population filters were partitioned into their respective cell segments and the

offsets bx0=y0 were omitted (Figures 2A, 3B, 4E, and 8A–8D).

Mutual information
We estimated how much information the reconstruction provided about the actual motion trajectory by evaluating a lower bound of

the mutual information Is;u =Hs � Hs j u between stimulus S and reconstruction U, analogous to Warland et al. (1997). Since motion in

x- and y-direction were independent of each other, we performed this computation separately for x- and y-direction and then

summed the two values to obtain a lower bound for the total information.

The Shannon entropy Hs = �P
spðsÞlog2 pðsÞ is here based on the probability distribution pðsÞ of (non-overlapping) stimulus seg-

ments s in x- or y-direction, respectively, of length LDt = 800 ms. The conditional entropy Hs ju = �P
upðuÞ

P
spðs juÞlog2 pðs juÞ is

derived from the probability of reconstruction segments pðuÞ (in x- or y-direction) and from the conditional probability pðs juÞ of stim-

ulus segments s given reconstruction segments u. The mutual information indicates how much the uncertainty about the stimulus S

is reduced by knowledge of the reconstructionU. A lower bound of the mutual information follows from the fact that motion steps are

normally distributed and that the reconstruction error e= s� u can be approximated by aGaussian distribution with zeromean (Borst

and Theunissen, 1999). The computation was performed in frequency space by obtaining the Fourier transforms, bs and be, of stimulus

segments and reconstruction error segments, s and e, respectively. Then, the one-sided power spectra Ps
j = h��bsj �� 2 + ��bs�j

�� 2iseg and
Pe
j = h��bej

�� 2 + ��be�j

�� 2isegwere derived by averaging over all segments, h,iseg, at each frequency j=ðLDtÞ, 0%j%L=2. This yielded a lower
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bound of the information density ijs;u > log2ðPs
j =P

e
j Þ, which gives the number of bits/s/Hz that are provided within each frequency band

(Figure 2C). The total mutual information for each motion direction was then calculated by summing across all frequency bands such

that Is;u >
PL=2

j =0log2ðPs
j =P

e
j Þ=ðLDtÞ (Borst and Theunissen, 1999; Warland et al., 1997).

For comparing the information gain for different groups of neurons, an information ratio Ipop=
P

kIk was derived from the mutual

information of the reconstruction from the population responses, Ipop, and the summed mutual information from the single-cell

reconstructions, Ik , within each population. For the analysis of pairs of direction-selective cells, we excluded pairs with a summed

single-cell information below 0.1 bits/s (approx. 15% of the pairs) since the information ratios of these pairs are more susceptible

to small fluctuations in their information estimates and mostly add noise to the data.

Pair information ratios were displayed in boxplots where boxes indicate the interquartile range (IQR, 25th to 75th percentile) and

horizontal lines depict the median of the determined information ratios. Vertical lines extend to data points within 1.5 x IQR, and

dots indicate outliers beyond this range. Since information ratios were usually not normally distributed, we used a nonparametric

Wilcoxon signed-rank test to determine whether information ratios were significantly different from unity. For comparing information

ratios between different conditions, we used a paired Wilcoxon signed-rank test.

LN model
To investigate the mechanisms underlying synergy in linear motion decoding, we extended the STA analysis to estimate a full linear-

nonlinear (LN) model (Chichilnisky, 2001). To do so, we computed the filtered motion trajectory g=Sseg$a, where the STA a was

normalized to unit Euclidean norm and the stimulus to unit variance. We then estimated the model’s nonlinearity, which describes

the relation between g and the evoked spike counts f by sorting the ðgj; fjÞ value pairs by increasing g and binning them into

15 bins containing the same number of pairs. To obtain the nonlinearity NðgÞas in Figure 5B, we determined the mean values within

each bin.

We determined the degree of non-monotonicity of each cell’s nonlinearity by introducing a U-shape index U = ðNðgminÞ�
Nð0ÞÞ=NðgmaxÞ, where NðgminÞ and NðgmaxÞ correspond to the leftmost and rightmost values, respectively, of the binned nonlinearity,

while Nð0Þ corresponds to the value of the central bin. U is close to unity when the nonlinearity is almost symmetric and strongly

U-shaped, close to zero for a flat left tail, and negative when the nonlinearity is monotonically rising.

Spike-triggered covariance analysis and model simulations
Most observed nonlinearities displayed an offset of around 2 Hz mean firing rate. This relatively high offset originates from motion

orthogonal to the preferred direction of a cell, which may trigger spikes through luminance-related activation. To determine the

contribution of orthogonal motion to the offset, we performed spike-triggered covariance analysis (Schwartz et al., 2006). We

computed the spike-triggered covariance matrix

STC=
X
j

fj sTj � a
� �

sTj � a
� �T

,X
j

fj

where sj are the row vectors of Sseg and fj the elements of the response vector f above, and performed an eigenvalue analysis.

We then focused on the eigenvectors corresponding to the two largest eigenvalues, which most clearly stood out from the

spectrum of eigenvalues (Figure S2A). We found that one of these eigenvectors closely matched the STA, whereas the other

corresponded to a motion trajectory in an orthogonal direction. For both eigenvectors, we then calculated conditional nonlin-

earities (Samengo and Gollisch, 2013) by selecting only those stimulus segments for which the stimulus projection onto the

other eigenvector was small �0:5<gj < 0:5
� �

and then computing nonlinearities in the same fashion as described above for

the LN model.

To study the effects of different nonlinearity shapes on motion decoding, we simulated a pair of direction-selective cells with an

LN model, using either a one-dimensional (Figures 5F–5H) or a two-dimensional motion trajectory (Figure S2). For each simulated

cell, we applied the experimentally determined motion filters of the direction-selective cells in Figure 5A to the trajectory and

determined the response rates in each time bin by using either a monotonic or a U-shaped nonlinearity. The applied nonlinearities

were obtained by least-squares fits of either an exponential, NðxÞ = AeBx, or a non-monotonic function with offset, NðxÞ = C +

Ax2eBx, to the conditional nonlinearities in Figure S2B.

For the model with one-dimensional motion, the conditional nonlinearity of the second STC eigenvector (which corresponds

to the cell’s STA) from the first cell was used. Taking the conditional nonlinearity (Figure S2B, blue lines) for the fit is more

appropriate than using the full nonlinearity (Figure 5B) because the latter contains a larger offset that is caused by motion

orthogonal to the preferred direction, whereas we here consider only one-dimensional motion. The conditional nonlinearity

takes this into account by focusing on stimulus segments for which the projection of the orthogonal component was particularly

small.
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For the model with two-dimensional motion, spike rates of each cell were determined by filtering the two-dimensional trajectory

with the cell’s first two STC eigenvectors and passing the filtered signals through their corresponding fitted nonlinearities, N1ðg1Þ
and N2ðg2Þ. Spike rates were then determined by summing over both components, such that Nðg1;g2Þ=N1ðg1Þ+N2ðg2Þ
(Figure S2C).

Finally, the spike count per stimulus frame was determined by a Poisson process with the rate given by the calculated response

rates. The responses of such modeled direction-selective cell pairs were analyzed in the same fashion as the experimental data, that

is, they were used to reconstruct a trajectory by determining population response filters and themutual information between stimulus

and reconstruction was calculated as above.

Conditional texture STAs
We used the linearly filtered trajectory g to divide the responses to texture motion into two groups: Responses to preferred motion

trajectories, with gj > 0:5, and responses to non-preferredmotion trajectories, with gj < � 0:5. For both groups, these responses were

then used to calculate conditional spatiotemporal STAs to texture motion by averaging the 800-ms stimulus sequences preceding

each spike. As expected from the spatiotemporal correlations in the texture stimulus, the obtained conditional STAs showed strong

correlations in space and time, with successive frames looking nearly identical. For further analyses and for the graphical represen-

tations in Figure 5H, we therefore selected a single frame of the conditional spatiotemporal STA as its spatial component. Concretely,

we used the frame at 200 ms prior to spiking because this time corresponds to the typical peak time of the motion STAs. To reduce

the effect of incomplete cancelation of non-relevant stimulus parts, we estimated the non-informative spatial pattern by averaging

over all stimulus frames and subtracted it from the conditional texture STAs. We excluded cells that did not have clear spatial struc-

ture in the corrected texture STAs by discarding cells whose absolute peak in the spatial component of the conditional STA was

smaller than four standard deviations of the pixel values in this frame, leading to 102 of 198 considered cells.

To assess whether direction-selective cells responded to bright or dark contrast during preferred or non-preferred motion, the

contrast values of the darkest and brightest pixel in the considered STA frame were added up and divided by the standard deviation

of all pixel values, resulting in a contrast bias estimate for preferred as well as for non-preferred motion trajectories. To determine

whether the location of dark spots in the conditional STAs was systematically related to a cell’s preferred direction, we obtained

the direction of the vector that connects the minimum of the spatial component of the conditional STA for preferred motion to the

minimum for non-preferred motion. We then determined the angular difference between this direction and the preferred direction

of the cell as obtained from drifting gratings.

Canonical correlation analysis
We used canonical correlation analysis (CCA, Macke et al., (2008)) to determine how population responses were coupled to certain

motion features. This method captured the most reliably encoded motion modes of the trajectory together with their correlated

population activity. For direction-selective cell pairs with either the same or different preferred directions, stimulus and response

were binned into Dt = 33ms intervals as above, and the time course of both was observed in parallel for segments of ~LDt = 2 s.

For CCA, stimulus and response were organized into matrices of stimulus segments ~Sseg and response segments ~Fseg from the

responses of the two cells f1i and f2i , respectively (see also above)

~Sseg =

0@ sx1 / s
x~L

sy1 / s
y ~L

« « « «
s
xM�~L+ 1

/ sxM s
yM�~L+1

/ syM

1A;
~Fseg =

0@ f11 / f1~L f21 / f2~L
« « « «

f1
M�~L+ 1

/ f1M f2
M�~L+ 1

/ f2M

1A
Then, the ð2,~LÞ3ð2,~LÞ cross-covariance matrix between stimulus and response segments Csf = hð~s� h~sisegÞT,ð~f� h~fisegÞiseg=
h~sT,~fiseg � h~siTseg,h~fiseg was determined, where h,iseg denotes the average across segments, which are the row vectors ~s and
~f of ~Sseg and ~Fseg, respectively. The cross-covariance matrix was then whitened by the covariance matrix Cszs21 of the stimulus

segments and the covariance matrix Cf of the response segments, so that C = C�1=2
s Csf C

�1=2
f . For finding the average stimulus

patterns that were maximally correlated with the pair responses, singular value decomposition (SVD) was applied to the whitened

cross-covariance matrix, C=UDVT . The column vectors uk and vk of the unitary matrices U and V then provided the k-th stimulus

and response components, ~ak =C�1=2
s uk and ~bk = C

�1=2
f vk , respectively, where the first five components of two sample pairs are

shown in Figures 6A and 6B. The diagonal entries rk of the diagonal matrix D denote the correlation coefficients between ~Sseg,~ak

and ~Fseg,~bk , corresponding to stimulus and response filtered with their k-th component vectors, respectively. This provides an order

to the pairs of stimulus patterns and response segments.
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Response correlations
We estimated the linear response correlations between direction-selective cell pairs by calculating the Pearson correlation coeffi-

cient of the binned cell responses, f i and f j, with

rij =
hf i T,f jit � hf iiTt ,hf jitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hf i T,f iit � hf iiTt ,hf iit
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hf j T,f jit � hf jiTt ,hf jit
q

For analyzing the correlations between the CCA response components, the Pearson coefficient was calculated from the upper and

lower half of the k-th response component, ~b
1::L

k and ~b
L+1::2L

k , respectively.

Subtractive and additive codes
Subtractive and additive codes of direction-selective cell pairs were determined by either subtracting or summing the binned spike

counts of the two cells, resulting in a single response sequence. These response sequences were then used to calculate trajectory

reconstructions, information estimates, motion STAs, and nonlinearities analogous to the single-cell analysis explained above. In

addition, we computed information ratios for the subtractive code of direction-selective cells with different preferred directions

by only considering motion along the spatial dimension (x- or y-direction) for which cells were motion-opponent. The appropriate

dimension was selected as the one with the larger difference between the peak values of the two corresponding motion STAs in

a 300 -ms interval prior to spiking.

DATA AND SOFTWARE AVAILABILITY

MATLAB implementations of the linear decoder, mutual informationmeasure, LNmodel, and canonical correlation analysis are avail-

able at:

https://github.com/gollischlab/AnalysisForDSPopulationCodes.

The data of this study are available at:

https://web.gin.g-node.org/gollischlab/Kuehn_and_Gollisch_RGC_spiketrains_for_moving_texture.
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