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SUMMARY
The retina dissects the visual scene into parallel information channels, which extract specific visual features
through nonlinear processing. The first nonlinear stage is typically considered to occur at the output of bipo-
lar cells, resulting from nonlinear transmitter release from synaptic terminals. In contrast, we show here that
bipolar cells themselves can act as nonlinear processing elements at the level of their somatic membrane po-
tential. Intracellular recordings from bipolar cells in the salamander retina revealed frequent nonlinear inte-
gration of visual signals within bipolar cell receptive field centers, affecting the encoding of artificial and nat-
ural stimuli. These nonlinearities provide sensitivity to spatial structure below the scale of bipolar cell
receptive fields in both bipolar and downstream ganglion cells and appear to arise at the excitatory input
into bipolar cells. Thus, our data suggest that nonlinear signal pooling starts earlier than previously thought:
that is, at the input stage of bipolar cells.
INTRODUCTION

Visual processing starts in the eye, where the neural network of the

retina parses visual signals into dozens of parallel streams of infor-

mation, represented by different types of retinal ganglion cells (Ba-

den et al., 2016; Gollisch and Meister, 2010; Masland, 2012;

W€assle, 2004). A pivotal role in shaping these streams of informa-

tion is taken up by retinal bipolar cells, which diversify the photore-

ceptor signals (Euler et al., 2014; W€assle et al., 2009) and provide

the basic excitatory input to ganglion cells (Asari and Meister,

2012; Franke et al., 2017). The nature of bipolar cell signals and

their transmission to ganglion cells is crucial for how ganglion cells

integrate visual information over their receptive fields. For example,

the nonlinear spatial integration that is characteristic for Y-type

ganglion cells (Enroth-Cugell and Robson, 1966; Krieger et al.,

2017; Petrusca et al., 2007) originates in nonlinear inputs to gan-

glion cells from bipolar cells (Borghuis et al., 2013; Demb et al.,

2001; Schwartz et al., 2012). Moreover, nonlinearities in bipolar-

to-ganglion cell signaling lie at the root of different computations

and feature extractions performed by specific ganglion cells (Bac-

cus et al., 2008; Gollisch andMeister, 2008, 2010; Krishnamoorthy

et al., 2017; M€unch et al., 2009; Ölveczky et al., 2003; Zhang et al.,

2012) and are crucial ingredients inmechanisticmodels of contrast

adaptation (Jarsky et al., 2011; Ozuysal and Baccus, 2012).

It is typically assumed that these nonlinearities arise in the

transmitter release from the axon terminals of bipolar cells in

the inner plexiform layer, whereas voltage signals at the soma
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of bipolar cells should be linearly related to visual contrast (Bac-

cus et al., 2008; Borghuis et al., 2013; Kuo et al., 2016; Shapley,

2009; Turner et al., 2018). This linearity of bipolar cell membrane

potential responses is thought to follow from the linear response

characteristics of photoreceptors (Baccus and Meister, 2002;

Baylor et al., 1974; Rieke, 2001; Tranchina et al., 1991) and the

continual, linear release of neurotransmitter by the photore-

ceptor ribbon synapse in the outer plexiform layer (Heidelberger

et al., 2005; Shapley, 2009; Witkovsky et al., 2001). Moreover,

current computational models of the retina assume linear recep-

tive fields of bipolar cells, followed by a nonlinear output transfor-

mation at their terminals (Baccus et al., 2008; Liu et al., 2017;

Schwartz et al., 2012; Turner et al., 2018).

However, there is little data about how bipolar cells represent

complex visual signals in their somatic membrane potential and

whether the presumed linearity actually holds across the diver-

sity of bipolar cell types. Difficulties for studying bipolar cells

arise from their relatively inaccessible location in the retina be-

tween the layers of photoreceptors and ganglion cells, their small

soma size, and their signaling by graded potentials rather than

action potentials. This has rendered bipolar cells an inconvenient

target for detailed studies of neural coding. So far, the focus has

largely been on studying temporal dynamics of bipolar cells

through fairly simple light stimuli, such as uniform spots that

were flashed or modulated in time (Awatramani and Slaughter,

2000; Baden et al., 2013a; Euler and Masland, 2000; Franke

et al., 2017; Ichinose et al., 2014; Ichinose and Hellmer, 2016;
ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Nonlinear contrast representation

in bipolar cells

(A) Responses for three sample cells to contrast

steps (displayed on the left), shown from spot

onset to 500 ms after offset. Here and in subse-

quent plots, the zero line marks the baseline

membrane potential. See Figure S1 for information

about recording technique.

(B) Output functions under spatiotemporal white

noise (as shown on the left) for the same three cells

as in (A).

(C) Hyperpolarization indices (HPi; n = 36 cells).

(D) Output nonlinearity indices (ONi; n = 29 cells).

(E) HPi versus ONi (n = 20 cells; black line, linear

regression; ***p < 0.001).
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Werblin and Dowling, 1969). An exception has been the mouse

rod bipolar cell, which displays a distinct, noise-canceling

threshold nonlinearity at the synapse from photoreceptors to

the bipolar cell, effective at light intensities near absolute dark-

ness (Berntson et al., 2004; Field and Rieke, 2002; Sampath

and Rieke, 2004). This provides sensitivity to individual local in-

puts. Conceivably, such nonlinear local processing could also

be functionally relevant at higher light intensities, yet similar

studies for other bipolar cell types have been lacking. Thus, it re-

mains largely unclear if and to what degree bipolar cells, at the

level of their membrane potential, contribute to nonlinear signal

processing in the retina. Moreover, systematic investigations of

bipolar cell responses under more complex visual stimuli, such

as spatial patterns or natural stimuli, are still lacking and may

provide new insight into bipolar cell stimulus encoding.

In this work, we therefore recordedmembrane potentials of bi-

polar cells in the whole-mount salamander retina under artificial

and natural visual stimulation in order to investigate the following

questions: (1) Does thebipolar cellmembranepotential represent

contrast in a nonlinear way? (2) Are there nonlinearities in bipolar

cell signal integration? (3) Can bipolar cell responses to artificial

and natural stimuli be described by linear filter models? And (4)

are nonlinear signals in bipolar cells driven by excitatory or inhib-

itory inputs?

RESULTS

We used sharp microelectrodes to intracellularly record somatic

voltage signals. To identify bipolar cells, we monitored the

recording depth and filled recorded cells with a neuroanatomical

tracer for morphological characterization. In addition, retinas
N

were placed onto a multielectrode array

to observe ganglion cell spiking activity

under current injection into the recorded

cell and verify excitatory effects of putative

bipolar cells (Figure S1).

Nonlinear contrast representation
in bipolar cells
We first tested whether the bipolar cells’

somatic membrane potential represents

visual contrast in a linear or nonlinear
fashion. We stimulated the cells’ receptive field centers with

spots of increased (positive contrast, ‘‘white’’) or decreased

(negative contrast, ‘‘black’’) light intensity on a gray back-

ground. To evaluate elicited membrane potential changes,

baseline membrane potentials, as measured during back-

ground illumination prior to spot presentation, were subtracted.

Figure 1A shows trial-averaged response traces for three

sample cells. Cell 1 responded with similar amounts of depolar-

ization and hyperpolarization to preferred and non-preferred

spot contrast, respectively, consistent with a linear response.

Cell 2 had stronger depolarization than hyperpolarization, sug-

gesting mild nonlinearity. Cell 3 only depolarized and did not

show any hyperpolarization for the non-preferred spot, indica-

tive of strongly nonlinear, completely rectifying response

characteristics. To quantify the degree of nonlinearly, we

computed a hyperpolarization index (HPi) as the normalized dif-

ference between the peak depolarization and the peak hyper-

polarization. The index is close to zero for linear responses,

close to unity for rectifying responses, and negative for

larger hyperpolarization than depolarization. Many cells had

strongly positive HPi values, providing evidence of nonlinear

representation of preferred versus non-preferred contrast

(Figure 1C).

We next asked whether similar contrast representation also

occurred under continuous, dynamic stimulation. To test this,

we applied a spatiotemporal white noise stimulus and analyzed

each recorded bipolar cell with a linear-nonlinear (LN) model.

The LN model is composed of a linear stimulus filter over space

and time and a nonlinear transformation, the cell’s output func-

tion, which relates the filtered stimulus signal to the membrane

potential. The linear filter represents the cell’s spatiotemporal
euron 109, 1692–1706, May 19, 2021 1693



Figure 2. Nonlinear spatial integration in bi-

polar cells

(A) Responses of six bipolar cells to contrast-

reversing uniform spots (left), split spots (middle),

and patterned spots with four quarters (right col-

umn).

(B) Spatial nonlinearity indices (SNi; n = 33 cells).

See also Figure S2.
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receptive field and can be obtained from a reverse correlation

analysis. The output function is then constructed from the filtered

stimulus and the measured membrane potential as a histogram,

and its shape directly indicates whether the filtered visual

contrast is represented linearly or nonlinearly by the bipolar cell’s

membrane potential.

Figure 1B shows the output functions for the same three sam-

ple cells as for the contrast steps, ranging again from linear (cell

1) through slightly nonlinear (cell 2) to strongly nonlinear (cell 3).

We quantified the degree of nonlinearity in the output function by

computing an output nonlinearity index (ONi) that compared the

average gain (obtained as the slope of a fitted straight line) in the

range of preferred (positive filter output) and non-preferred

(negative filter output) contrast sequences. The index is close

to zero for linear output functions, larger than zero for rectifica-

tion, and can be smaller than zero for cells with saturation at large

filter output. The distribution of obtained ONi values (Figure 1D)

again indicated diverse degrees of nonlinearity, ranging from

linear representation to pronounced nonlinear rectification.

Furthermore, the degrees of nonlinearity under contrast steps

and under white noise were positively correlated (Figure 1E; r =

0.81, p = 23 10�5, n = 20 cells). Thus, whether a cell represented

contrast linearly or nonlinearly did not depend on the applied

stimulus but appears to be a cell-specific property.
1694 Neuron 109, 1692–1706, May 19, 2021
Nonlinear spatial integration in
bipolar cells
Bipolar cells integrate visual information

over space via multiple photoreceptors

within their receptive fields. We therefore

next asked whether nonlinear operations

may also occur at the level of spatial signal

integration. To test this, we applied visual

stimuli that subdivided the receptive field

center into regions of opposing stimulation

(‘‘patterned spot’’), for example, a bright

and a dark half (‘‘split spot’’) or four quar-

ters of alternating contrast, and periodi-

cally reversed the contrast every half sec-

ond. If spatial integration occurs linearly,

the positive and negative activation from

the two opposing contrasts in the

patterned spots should cancel each other,

and the bipolar cell should not respond to

the contrast reversals. Without cancel-

ation, on the other hand, the cell can

respond to both reversal directions, result-

ing in frequency doubling of the response.

This frequency doubling is a telltale sign
of nonlinear spatial integration and has been frequently used to

characterize spatial nonlinearities in ganglion cells (Demb

et al., 1999; Enroth-Cugell and Robson, 1966; Hochstein and

Shapley, 1976a, 1976b; Petrusca et al., 2007).

Figure 2A shows responses of six bipolar cells to the split spot

(middle column) and the spot with four quarters (right column) as

well as to a uniform contrast-reversing spot for comparison (left

column). All six cells clearly responded to the uniform spot. Yet

under the patterned spots, cell 1 showed only small membrane

potential fluctuations. Cell 2 also hardly responded to the four-

quarters stimulus, and responses to the split spot had no fre-

quency doubling, indicating imperfect stimulus placement with

non-symmetric activation by the two stimulus halves. The lack

of frequency-doubled responses for these two cells is consistent

with linear spatial integration. Cells 3 to 6, on the other hand, re-

sponded with depolarization to both reversals, displaying fre-

quency doubling and thus revealing nonlinear spatial integration.

The relative sizes of the frequency-doubled responses,

compared with responses under the uniform spot, indicate

different degrees of nonlinearity, for example modest for cell 3

and pronounced for cell 6.

To quantify the degree of nonlinear stimulus integration, we

computed a spatial nonlinearity index (SNi) by comparing the po-

wer of the first and higher harmonics in the responses to the
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uniform and patterned spots (Hochstein and Shapley, 1976b;

Turner and Rieke, 2016; see also STAR Methods and Figures

S2A and S2B). The index was close to zero if the cell did not

respond to the patterned spot reversals, whereas values larger

than zero indicated frequency doubling and thus nonlinear stim-

ulus integration. For each cell, we selected the maximum SNi

over different spatial patterns. The observedmaximumSNi values

(Figure 2B) indicate that bipolar cells covered a range from linear

(SNiz 0) to clearly nonlinear spatial integration (up to SNiz 1.4).

The stimuli used to test for nonlinear spatial integration were

periodic contrast reversals at 1 Hz. It had been shown that

light intensity modulations above a few hertz but not at lower

temporal frequency can reveal rectified membrane potentials

in certain mouse bipolar cells (Ichinose and Hellmer, 2016).

We therefore tested whether the observed responses to

patterned spots also showed a dependence on temporal fre-

quency. Yet we found that response amplitudes were stable

over a wide range of frequencies and decayed at larger

frequencies in a similar way as responses to uniform spots

(Figures S2C and S2D), indicating that the observed nonlinear

spatial integration is independent of the temporal frequency of

stimulation.

Nonlinear spatial integration limits the prediction
accuracy of the LN model
To analyze how the observed nonlinearities affect the encoding

of visual stimuli, we tested how well bipolar cell responses are

captured by the LN model (cf. Figure 1B). The aim of the model

is to predict a cell’s response by first performing a linear integra-

tion of the stimulus using a spatiotemporal filter and then passing

the result through a nonlinear transformation. Thus, the LN

model can accommodate nonlinear representations of contrast,

but not nonlinear spatial integration.

We first looked at LN models under full-field white noise

stimulation without spatial structure. The linear filter and the

nonlinearity of the LNmodel were again obtainedwith reverse cor-

relation. The stimulus contained a repeatedly inserted fixed white

noise sequence (‘‘frozen noise’’), which was excluded from the

reverse correlation analysis and served as a held-out test stim-

ulus. Figure 3A shows the obtained model components for two

sample cells, one spatially linear and the other nonlinear. For

both cells, the predicted responses obtained from the LN model

accurately matched the cells’ averaged responses to the frozen

noise (Figure 3A). To quantify the similarity between prediction

and actual response, we computed the explained variance R2

as the squared correlation coefficient between model prediction

and averaged response. Across the population of recorded cells,

this prediction performance ranged from 68% to 97% (Figure 3C),

indicating that the LNmodel accurately predicted responses of bi-

polar cells to stimuli with no spatial structure.

Next, we investigated whether the accuracy of the prediction

was affected by spatial structure, using spatiotemporal white

noise. Figure 3B shows the LN model components (spatial and

temporal filter as well as nonlinearity) for a spatially linear and a

spatially nonlinear sample cell. We used the model to predict

voltage traces for several held-out segments. The more linear

cell 3 had fairly accurate predictions with 72% explained

variance, whereas themore nonlinear cell 4 only yielded 54%ex-
plained variance. In general, the distribution of model perfor-

mance for the spatiotemporal white noise (Figure 3E) was

much broader than that for spatially uniform white noise and var-

ied between 13%–83% explained variance (n = 29 cells).

To test whether it was the nonlinear spatial integration that

caused low prediction performance of the LN model, we related

the SNi to the model performance. For the full-field white noise,

weobserved no correlation (r = 0.24, p = 0.46, n = 11 cells); spatially

linear as well as nonlinear cells showed good model predictions

(Figure 3D). For the spatiotemporal white noise, however, we found

a clear negative correlation (Figure 3F; r = �0.7, p = 0.002, n = 17

cells); higher spatial nonlinearity indices (i.e., stronger responses to

the patterned spots) came with lower performance of the spatio-

temporal LN model. Furthermore, we observed that model perfor-

mances under full-field and spatiotemporal stimulation were not

correlated (Figure 3G; r = �0.17, p = 0.66, n = 9 cells) and that,

in particular, cells with high model performance under the full-field

white noise could have lowermodel performance under spatiotem-

poral white noise. This confirms that it is the spatial structure of the

stimulus, not the particular sampling of cells, that leads to low

response predictions under spatiotemporal stimulation.

The results show that the assumed linear integration of the

model does not correctly describe all bipolar cells. For example,

the LN model would predict activity cancelation when simulta-

neous opposing contrast occurs inside the receptive field, which

may explain why it missed specific response peaks of nonlinear

bipolar cells (see arrows in Figure 3B for cell 4).

Nonlinear contrast representation and spatial
integration under natural movies in bipolar cells
To test whether bipolar cells represent and integrate contrast

also nonlinearly under natural stimuli, we recorded responses

to movies from the ‘‘CatCam’’ database (Betsch et al., 2004),

which, although they do not represent the natural habitat of sal-

amanders, contain a variety of natural objects, textures, andmo-

tion signals. Recorded bipolar cells responded reliably to

different trials of such a movie (Figure 4A; time-averaged SD

0.34 ± 0.19 mV, mean ± SD, n = 19 movies, nine cells).

We investigated whether the nonlinear contrast representa-

tion observed under spatiotemporal white noise (e.g., cell 3 in

Figure 1B) persisted under natural stimulation. To apply the

LN model analysis to the natural movies, we kept the spatio-

temporal filter from the white noise experiments, assuming

that the receptive field remains approximately constant under

the different stimulus contexts. (Estimating the filter from the

natural-movie responses is not feasible here because of the

comparatively small amount of data and the inherent correla-

tion structure of natural stimuli.) We then re-computed the

output function from the relation between the filtered movie

signal and the measured responses to the movie (Heitman

et al., 2016). The obtained output functions showed linear as

well as nonlinear representation of contrast under natural

movies for different cells (Figure 4A). We again quantified the

degree of nonlinearity by computing the ONi as described for

white noise stimuli. The ONi under natural stimuli was strongly

correlated with the ONi under white noise (Figure 4B; r = 0.8,

p = 0.009, n = 9 cells), and the two measures did not differ

significantly (p = 0.43, n = 9 cells). Thus, the nonlinear contrast
Neuron 109, 1692–1706, May 19, 2021 1695



Figure 3. Nonlinear spatial integration limits the prediction accuracy of the linear-nonlinear (LN) model
(A) Left: LNmodel (filters and output functions) for full-field temporal flicker for two sample cells. Middle: responses to the patterned spot with maximal frequency

doubling (black) and to the uniform spot (dashed gray) for comparison. Right: measured (black) and predicted (red) responses.

(B) Left: LN model (filters and output functions) for spatiotemporal flicker for two sample cells. Middle: same as in (A). Right: measured (black) and predicted (red)

responses. Black arrows mark non-predicted responses for cell 4.

(C) Model performance (R2) under full-field white noise (n = 11 cells).

(D) Spatial nonlinearity index versus R2 under full-field white noise (n = 11 cells).

(E) R2 for spatiotemporal white noise (n = 29 cells).

(F) Same as (D) for spatiotemporal white noise (black line, linear regression; **p < 0.01).

(G) R2 under full-field versus spatiotemporal white noise for cells recorded under both stimuli (n = 9 cells).
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representation of bipolar cells was similar under artificial and

natural stimulus statistics.

To study spatial integration with natural movies, we investi-

gated the performance of the LN model for these stimuli. We

kept the filter as well as the output function of the model as
1696 Neuron 109, 1692–1706, May 19, 2021
obtained under spatiotemporal white noise, so as not to use the

natural-movie data for both parameter estimation andmodel eval-

uation. Figure 4C shows comparisons ofmodel predictions for the

two sample cells of Figure 4A. Overall, model performance for

natural movies (Figure 4D, top) was somewhat higher than for



Figure 4. Nonlinear contrast representation and spatial integration under natural movies

(A) Responses to natural movies from two sample cells. Left: movie frame with receptive field outlines (red). Middle: single-trial voltage traces (colored lines, 9 or

10 trials) and average response (black lines) to the first 10 s of the movie. Right: output functions obtained from the movie responses.

(B) Output nonlinearity index (ONi) under white noise versus under natural movies. Black dots, averageONi overmovies for each cell (n = 9 cells); gray dots, ONi for

individual movies (n = 19); black line, linear regression (**p < 0.01); dashed red line, identity.

(C) LN model performance under natural movies for the two sample cells of (A). Left: responses to the patterned spot. Right: responses (black) to the first 10 s of

the movie and corresponding prediction (red). R2 is the model prediction for the full movie (40 s). Black arrows for cell 2 mark non-predicted responses.

(D) Top: model performance (R2) over all natural movies (n = 19). Bottom: R2 versus spatial nonlinearity index, shown as in B (n = 9 cells, 19 movies, *p < 0.05).
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spatiotemporal white noise, but still with considerable spread,

ranging between 45% and 91% explained variance (n = 19

movies, nine cells). To test whether, as for the spatiotemporal

white noise, it was the nonlinear spatial integration that caused

low prediction performance for some cells, we again related the

SNi to themodel performance.We observed a clear negative cor-

relation (Figure 4D, bottom; r =�0.73, p = 0.027, n = 9 cells). Thus,

nonlinear spatial integration also limited the predictive quality of

the LN model for some bipolar cells under natural stimuli.

Nonlinear spatial integration in bipolar cells is driven by
excitatory feedforward inputs
What may be the biological source of the nonlinear spatial inte-

gration? From photoreceptors, bipolar cells receive excitatory

feedforward inputs through cation channels (Maple and Wu,

1996), which are integrated along the dendrites and in the

soma of the bipolar cells. However, bipolar cells also receive
inhibitory feedback from amacrine cells at the bipolar cell synap-

tic terminals. As bipolar cells are electrically quite compact,

these inhibitory signals might back-propagate to the soma and

influence the somatically recorded membrane potential (Euler

and Masland, 2000; Masland, 2012). Thus, nonlinear signal inte-

gration in bipolar cells could result from inhibitory amacrine cell

inputs, in particular as amacrine cells might themselves be

spatially nonlinear through rectified bipolar cell input, in the

same way as traditionally considered for ganglion cells.

However, whenwe tested for a contribution of inhibitory inputs

to nonlinear spatial integration in bipolar cells by applying

blockers of inhibition, we saw no effect. Frequency doubling in

bipolar cell responses to contrast-reversing patterned spots per-

sisted under a cocktail of picrotoxin and strychnine, which

blocks GABAA, GABAC, and glycine receptors (Figure 5A). In

fact, spatial nonlinearity indices were rather increased in the

presence of the inhibition block (Figure 5B, bottom), similar to
Neuron 109, 1692–1706, May 19, 2021 1697



Figure 5. Spatial integration in bipolar cells

is driven by excitatory inputs

(A) Split-spot responses for two sample cells

before (black) and during inhibition block (red).

(B) Spatial nonlinearity indices before and during

inhibition block (n = 9 cells; dashed line, identity).

(C) Left: split-spot responses for four sample cells

while injecting depolarizing (red), hyperpolarizing

(blue), or no current (black). Right: maximum

response amplitude versus baseline membrane

potential for each cell (black lines, linear regres-

sion; average extrapolated reversal potential: 0 ±

18 mV, mean ± SD).
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observations by Demb et al. (2001) in ganglion cells. The persis-

tence of frequency doubling under inhibition block indicates that

inhibitory inputs are not essential for the occurrence of nonlinear

spatial integration in bipolar cells.

To further examine the nature of the inputs that underlie

nonlinear spatial integration, we aimed to assess the effects of

depolarizing or hyperpolarizing the bipolar cell and to estimate

the reversal potential of the relevant inputs. Given the difficulty

of obtaining whole-cell patch-clamp recordings from the small

bipolar cells in a retinal whole-mount preparation in which the

cells are covered by other neural layers, we opted for depolariza-

tion and hyperpolarization in current clamp by injecting positive

and negative currents through the sharp microelectrode.

Analyzing how the measured stimulus-evoked response ampli-

tude depends on the baseline membrane potential under current

injection can reveal whether the responses are driven by excit-

atory or inhibitory inputs (Zaghloul et al., 2003). If excitatory

cation inputs caused the responses to the patterned spot, pos-

itive (depolarizing) current injection should decrease the driving

force of the input and thus reduce the measured voltage

response, whereas inhibition-driven responses should increase

with positive current injection. We observed that the former

was the case; for all four recorded bipolar cells, responses to

flashed split spots decreased with more depolarizing current in-
1698 Neuron 109, 1692–1706, May 19, 2021
jection, and extrapolation suggested a

sign reversal of the responses near 0 mV

baseline membrane potential (Figure 5C).

Thus, the responses that are character-

istic for nonlinear spatial integration are

driven by excitatory, cationic inputs,

corroborating that nonlinear spatial inte-

gration does not depend on inhibitory

signals.

Input nonlinearities dominate the
nonlinear characteristics of bipolar
cell responses
Given that bipolar cells showed both

nonlinear contrast representation (Fig-

ure 1) as well as nonlinear spatial integra-

tion (Figure 2), we asked whether these

two nonlinearities are related. For

example, the first sample cell in Figure 6A

had a near linear contrast representation
as well as approximately linear spatial integration. The second

sample cell, on the other hand, displayed strongly nonlinear

characteristics in both cases. Across all cells, the ONi and the

SNi were indeed positively correlated (r = 0.57, p = 0.017, n =

17 cells; Figure 6B).

The correspondence between the twomeasures of nonlinearity

let us hypothesize that they have the same origin, namely, a local

nonlinear transformation of excitatory inputs. The nonlinear

contrast representation would then simply be inherited from the

local transformation with no second nonlinear stage acting on

the integrated signal. If this is the case, the responses to the split

spot and to the uniform spot should be related through a simple,

generic model (Figure 6C). In the model, the contrast signal from

eachhalf of the receptive field is filtered and transformedbya local

nonlinear function, and the two resulting signals are linearly

summed to yield the membrane potential without any further

nonlinearity. Therefore, according to the model, the split spot

response is the sum of the responses to a half-field white stimulus

and a half-field black stimulus, which, in turn, are half of the re-

sponses to the full white and full black spots, respectively. This

lets us predict the responses to the contrast-reversing split spot

without having to explicitly take nonlinear transformations into ac-

count because the measured responses to the uniform spots

already contain the local nonlinearities that also affect the stimulus



Figure 6. Input nonlinearities dominate the

nonlinear characteristics of bipolar cells

(A) Output functions and responses to patterned

spots for two sample cells.

(B) Output nonlinearity indices (absolute values)

versus spatial nonlinearity indices (n = 17 cells;

black line, linear regression; *p < 0.05).

(C) Relationship between responses to the split

spot and the uniform spot under a model with only

local nonlinearities. The local input signals are

passed through a nonlinearity. For the split spot

(middle), the two outputs are summed; for a uni-

form spot, the corresponding output is doubled

(left and right).

(D) Predicting the split-spot response for a sample

cell. Top: measured response to contrast-

reversing uniform spots, split into two half-periods.

Middle: estimated response to half-field black and

white spots (half of uniform-spot responses). Bot-

tom: predicted (red) and measured response

(black) to the split spot, obtained by summing the

half-field responses.

(E) Responses to uniform and split spots, together

with the split-spot predictions (red) for three further

sample cells. See Figure S3 for additional exam-

ples.

(F) Prediction accuracy of the model (n = 33 cells).
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integration for the split spot. Note that the same prediction is ob-

tained for the patterned spot with four quarters, as it effectively

also comprises two receptive field halves of increasing and

decreasing light intensity, respectively.

Figure 6D illustrates the procedure for the prediction of a sam-

ple cell that displayed nonlinear spatial integration. Indeed, we

found that the predicted trace (red line) matched the measured

response trace (black line) quite accurately. Figure 6E shows

the responses and predicted traces of three further cells. For

the first, the predicted response was small, similar to the cell’s

actual response. The other two cells had larger response predic-

tions (indicative of nonlinear spatial integration), which matched

the measured responses (see Figure S3 for more sample cells.)

To quantify whether this simple model captured the responses

under patterned-spot stimulation, we computed a prediction ac-

curacy measure, which takes a value of unity if the predicted and

measured responses match and zero for a mismatch. For most

of our cells (28 of 33), we observed high prediction accuracy,

with values larger than 0.7 (Figure 6F). For the three cells with

poor prediction accuracy (<0.2 in Figure 6F), the failure appears

to have resulted from unbalanced responses to the two reversal

direction (whereas the model assumes that both reversals have

identical effects), owing to amisalignment of stimulus and recep-

tive field (Figure S3B). Altogether, this analysis suggests that the

primary nonlinear signal transformations indeed occur locally

before spatial integration at the bipolar cell soma.

Spatial scale of nonlinear signal processing
The nonlinear spatial integration suggests that bipolar cells are

sensitive to spatial structure below the scale of their receptive

fields. To explore this spatial resolution, we investigated the

spatial scale at which nonlinear integration appears. We stimu-
lated receptive field centers with contrast-reversing patterned

spots of increasingly finer spatial structure, using spots divided

into two halved, into four quarters, and into squares of 25 or

10 mm in length (Figure 7A). Responses to fine checkerboards

of 25 mm were substantially reduced, and 10 mm checkerboards

yielded essentially no responses (see Figure 7B), indicating that

such fine spatial patterns are integrated linearly. In contrast, for

subdivisions of the receptive field into quarters, responses

were still nearly as strong as for the split spot, indicating that

nonlinear spatial integration can occur at a scale of about 30 mm.

Although photoreceptors in the salamander are somewhat

smaller than this scale, with typical sizes of 10–15 mm (Mariani,

1986; Sherry et al., 1998), their spacing may be larger, making

them a potential source of the nonlinearity. Indeed, nonlinear re-

sponses have previously been observed in cone photoreceptors,

at least when high enough visual contrast was provided (Ende-

man and Kamermans, 2010; Howlett et al., 2017). To test

whether photoreceptors display nonlinearities for stimuli used

in the present study, we intracellularly measured their voltage re-

sponses under spatiotemporal white noise stimulation and

reversing uniform and split spots. We found that photoreceptors,

compared with bipolar cells (cf. Figures 1D and 2B),

showedmore linear and less diverse output functions (Figure 7C)

and also integrated signals linearly (Figure 7D). Thus, photore-

ceptor membrane potentials seem not be the origin of the nonlin-

earity in the input to bipolar cells under the applied stimulus

conditions.

Given that we found bipolar cells to be sensitive to spatial struc-

ture smaller than their receptive fields (typically�50–120 mm in sal-

amander; see Figure S4E and Baccus et al., 2008, and Ölveczky

et al., 2003), we asked whether this spatial sensitivity translated

to ganglion cells. We recorded ganglion cell responses to
Neuron 109, 1692–1706, May 19, 2021 1699



Figure 7. Spatial scale of nonlinearities in

bipolar and ganglion cells

(A) Responses of two sample bipolar cells to

different patterned spots.

(B) Spatial nonlinearity indices for the different

spatial structures (n = 22 cells for 10 mm squares,

n = 33 cells for all others). Box marks the 25th and

75th percentiles, the central line the median, the

whiskers the range of data, and crosses the out-

liers (according to Tukey’s fences). **p < 0.01 and

***p < 0.001.

(C) Sample photoreceptor output functions under

spatiotemporal white noise and output nonlinearity

indices for photoreceptors (n = 10 cells).

(D) Photoreceptor responses to contrast-reversing

uniform and split spots.

(E) Left: spike rasters of two sample ganglion cells

under 1 Hz reversing gratings with different bar

widths (indicated on top). Each row is a temporal

period (dashed line, reversal in the middle of the

period). The second cell already responded for a

bar width of 20 mm. Right: peak firing rate versus

grating width, fitted by a logistic function, whose

midpoint defined the scale of spatial sensitivity.

(F) Extracted spatial scales (n = 167 ganglion cells).
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contrast-reversing square-wave gratings of different spatial fre-

quenciesand indeedobserved thatmanyganglioncells responded

already to gratings with a bar width as small as 20 mm (Figures 7E

and 7F). This high spatial resolution is inconsistent with models in

which the first nonlinearity occurs only at the synaptic output of bi-

polar cells. Moreover, it indicates that the effects of nonlinear

spatial integration observed in bipolar cells are preserved along

the synaptic transmission to ganglion cells, thereby setting the

spatial sensitivity of the retina’s output and mediating retinal re-

sponses to stimulus structures of few tens of micrometers.

Relation of nonlinear processing and standard response
properties in bipolar cells
The type of glutamate receptor at the bipolar cell dendrite deter-

mines the cell’s preferred contrast (ON versusOFF) and can also

influencewhether its light responses have transient or sustained

characteristics (DeVries, 2000;DeVries andSchwartz, 1999; Eu-

ler et al., 2014;W€assle, 2004). It has also been hypothesized that

the glutamate receptor could contribute to nonlinear transfor-
1700 Neuron 109, 1692–1706, May 19, 2021
mations (Demb et al., 2001). We thus

aimed to relate a cell’s nonlinearity to its

standard response properties.

To assess transient versus sustained re-

sponses, we quantified the response ki-

netics under spots of preferred contrast

(Figure 8A) with a sustained-transient in-

dex (STi), which takes values close to

zero for transient and near unity for sus-

tained responses. The STi was negatively

correlated with the SNi (Figure 8B; r =

�0.7, p = 3 3 10�5, n = 29 cells), showing

that more transient cells had stronger non-

linearities as revealed by the patterned-
spot experiments. We also checked whether nonlinear response

characteristics were related to response latency. Latency can

be measured as response onset or time to peak (Franke et al.,

2017; Krieger et al., 2017), and we observed that sustained cells

showed a fast response onset but longer time to peak, whereas

transient cells showed a more sluggish onset but earlier peak

(see sample cells in Figure 8A and Figure S4B). Indeed, the two la-

tency measures showed different correlations with the degree of

spatial nonlinearity. Response onset was positively correlated

with the SNi (Figure 8C; r = 0.38, p = 0.04, n = 29 cells), whereas

time to peak indicated a rather negative yet non-significant corre-

lation (r = �0.28, p = 0.14, n = 29 cells). Thus, nonlinear bipolar

cells are typically transient cells with a slow onset but perhaps

faster peak response.

In addition, we checked whether there were systematic differ-

ences in nonlinear properties between ON and OFF bipolar cells.

Note, however, that the salamander retina is biased toward OFF

cells (Burkhardt et al., 1998; Hare et al., 1986; Hare and Owen,

1990; Segev et al., 2006), and our recordings yielded around



Figure 8. Relation of nonlinearities and standard response properties in bipolar cells

(A) Left: responses of two bipolar cells to uniform spots (dots, response onsets; arrows, response peaks). Right: responses for the same cells to the patterned spot

with maximal frequency doubling.

(B) Spatial nonlinearity indices versus sustained-transient indices (n = 29 cells; black line, linear regression).

(C) Same as (B) for response onset.

(D) Saturating output function under white noise of an ON bipolar cell (left) and output nonlinearity indices for OFF and ON cells (right; 26 OFF and 3 ON cells).

(E) Left: responses to local (red) and large spots (blue) for two sample cells. Right: same as (B) for the center-surround index (n = 33 cells).

(legend continued on next page)
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90% OFF and only 10% ON bipolar cells. The few ON cells

showed comparatively smaller output nonlinearity indices (p =

0.016, n = 29 cells; Figure 8D) and indicated a saturation of the

output function, leading to negative ONi values.

We further examined the suppressive surround of bipolar cell

receptive fields and quantified the surround strength by a cen-

ter-surround index, computed from the peak responses to large

and small spots (Figure 8E). Index values larger than zero indi-

cated surround suppression. The center-surround index, how-

ever, was not correlated to the SNi (r = 0.05, p = 0.78, n = 33

cells; Figure 8E); cells both with and without suppressive sur-

round could be nonlinear. Consistent with this finding, the non-

linearities of bipolar cells did not depend on the stimulation of

the receptive field surround. The relative amplitudes of hyper-

polarization and depolarization for black and white spots

were similar for small and large spots (r = 0.9, p = 3.6 3

10�14, n = 36 cells; Figure 8F), and nonlinearities in the LN

model were nearly identical under spatiotemporal and spatially

homogeneous white noise, though the latter provides stronger

surround activation (Figure 8G; correlation betweenONi values:

r = 0.8, p = 0.01, n = 9 cells). We also tested full-field stimulation

with classical contrast-reversing sinusoidal gratings (Enroth-

Cugell and Robson, 1966) and found that they yielded similar

results (in particular frequency doubling) as the local stimulation

with reversing patterned spots (see Figure 8H and Figures S4C–

S4H for further comparisons).

DISCUSSION

Nonlinear signal integration in bipolar cells
Our finding of nonlinear spatial integration in bipolar cells clashes

with the classical view of linear signal processing in these cells. In

particular, bipolar cells are considered to pool their inputs over

space in a linear fashion. This view is based on the linear photo-

receptor responses and the continuous transmitter release of the

ribbon synapses at the photoreceptor terminals (Shapley, 2009).

The first nonlinear signal transformation is then thought to occur

at the output of bipolar cells, through nonlinear glutamate release

from the synaptic terminals (Baccus et al., 2008; Borghuis et al.,

2013; Roska and Meister, 2014). The nonlinear integration

observed in our work is fundamentally different from this nonlin-

earity at bipolar cell terminals. From a functional perspective, the

nonlinear signal integration—unlike nonlinear processing occur-

ring at the output, after signal integration—allows the retina to

maintain sensitivity to spatial frequencies below the scale of bi-

polar cell receptive fields.

Few studies had previously tested the assumed linear signal

pooling in bipolar cells. Accurate predictions of responses to jit-

tering gratings with a linear-receptive-field model for sample bi-

polar cells (Baccus et al., 2008) supported linear integration, yet
(F) Left: responses to local (red) and large spots (blue) under preferred and non-pre

versus large spots (n = 36 cells; red dashed line, identity).

(G) Left: output functions (normalized to maximum and a range of �1 to 1) unde

output nonlinearity index (ONi) for spatiotemporal versus full-field white noise (n

(H) Left: response of two cells to different phases of full-field reversing gratings

spatial nonlinearity index under grating stimulation (n = 9 cells).

See Figure S4 for further comparisons. *p < 0.05, **p < 0.01, and ***p < 0.001.
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leaving room for differences in integration characteristics across

bipolar cell types. Support for linear spatial integration in the

mouse retina came frommeasurements of bipolar cell glutamate

release, which revealed response nulling under reversing grat-

ings (Borghuis et al., 2013). Yet, as this study focused on bipolar

cells connected to alpha-type ganglion cells, whosemajor inputs

likely come from few specific bipolar cell types (Schwartz et al.,

2012; Tien et al., 2017; Yu et al., 2018), other bipolar cells in the

mouse retina may still differ in this respect.

It is thus worth noting that there is some evidence for nonlinear

signal integration in mammalian bipolar cells as well. Rod bipolar

cells in the mouse retina integrate inputs nonlinearly near abso-

lute darkness (Berntson et al., 2004; Field and Rieke, 2002; Sam-

path and Rieke, 2004), though this is typically considered a

rather specific scenario in which the nonlinearity depends on

the saturated state of the photoreceptor-to-bipolar cell signal

transmission in complete darkness. Under photopic conditions,

Freeman et al. (2015) observed that responses of primate gan-

glion cells did not completely cancel out when two cones projec-

ting onto the same bipolar cell were stimulated with opposing

contrast. The authors attributed the remaining response to non-

linearities in cone photoreceptors, leading to nonlinear integra-

tion by the bipolar cell, in line with our findings. Furthermore,

some ganglion cells in mouse retina are sensitive to patterns

with spatial scales of about 20 mm (Jacoby and Schwartz,

2017; Krieger et al., 2017; Mani and Schwartz, 2017; Schwartz

et al., 2012; Zhang et al., 2012), though this high spatial sensi-

tivity was interpreted as resulting from spatially linear bipolar

cells with small receptive fields and nonlinear synaptic release.

Yet given that reports of receptive field sizes of mouse bipolar

cells are typically in the range of 40–80 mm (Berntson and Taylor,

2000; Borghuis et al., 2013; Franke et al., 2017; Schwartz et al.,

2012), spatially nonlinear bipolar cells could provide a viable

alternative source of the observed spatial sensitivity.

Regarding representation of visual contrast by the bipolar cell

membrane potential, several previous studies had shown linear

characteristics, mainly in the context of contrast adaptation

(Baccus and Meister, 2002; Rieke, 2001; Sakai and Naka,

1987a, 1987b; Toyoda, 1974), yet often relying on few sample

cells. Other studies in the salamander and mammalian retina

had documented somatic nonlinearities in the membrane poten-

tial (Burkhardt et al., 2011; Burkhardt and Fahey, 1998; Euler and

Masland, 2000; Fahey and Burkhardt, 2003; Ichinose and

Hellmer, 2016; Molnar et al., 2009; Wu et al., 2000), but often

based on a much larger applied luminance or contrast range

compared with the present study. Under large light intensity

changes, nonlinear output functions are expected because of

saturation effects. In the present work, nonlinearities were

measured with moderate light intensity changes (e.g., as occur-

ring within a single natural scene), indicating that nonlinearities
ferred contrast for a sample cell. Right: hyperpolarization indices (HPi) for local

r spatiotemporal (red) and full-field (blue) white noise for a sample cell. Right:

= 9 cells).

(red circles, schematized receptive field stimulation). Right: distribution of the
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are relevant not only when changing luminance regimes but also

for stimulus encoding within a natural range of Weber contrast

values.

Taken together, our results support a bipolar cell model in

which the input signals can be nonlinearly transformed, leading

to nonlinear spatial integration and nonlinear contrast representa-

tion at the soma of some bipolar cells and in which additional

rectification of the integrated signal occurs at the axon terminals

(Demb et al., 2001). Regarding the representation of contrast,

both these nonlinear mechanisms typically provide rectifying

transformations, and the combined, enhanced nonlinearity might

be required for optimal encoding of natural contrast ranges, as

previously hypothesized (Burkhardt et al., 2006). An exception

may be seen in the few recorded ON bipolar cells of our study,

two of which displayed stronger hyperpolarization than depolari-

zation (Figure 8D), which might effectively provide partial cancel-

ation of rectification occurring in the synaptic release.

Putative mechanisms for nonlinearities in bipolar cells
The observed nonlinearities appear to arise along the feedfor-

ward inputs before signal integration in the bipolar cell soma

(Figures 5 and 6). A dependence on inhibitory inputs through

back-propagating amacrine cell inputs (Euler and Masland,

2000; Masland, 2012) or through glycinergic interplexiform cells

(Jiang et al., 2014; Maple and Wu, 1998) is unlikely, as inhibition

block had little effect on the nonlinear spatial integration and the

relevant responses displayed a reversal potential near 0 mV,

indicative of a cation-mediated input. In addition, the nonlinear

signal integration in bipolar cells led to depolarizing rather than

hyperpolarizing events under patterned spots (e.g., Figure 2A),

which is inconsistent with a simple inhibitory input and would

require a disinhibitory interaction. Finally, the observed spatial

sensitivity of retinal ganglion cells to gratings with bar widths

as small as 20 mm suggests that the bipolar cell layer, prior to in-

teractions with amacrine and ganglion cells, must provide spatial

sensitivity below the scale of bipolar cell receptive fields (about

50 mm and larger; Figure S4E; Baccus et al., 2008; Ölveczky

et al., 2003). As amacrine cells receive their signals through the

bipolar cells, they could not create sensitivity to spatial struc-

tures below the bipolar cell receptive field scale if all signals

below this scale were filtered out by the bipolar cells.

The signal transformations underlying the nonlinear spatial

integration thus appear to originate in the outer retina layers.

One potential site could be the bipolar cell dendrites (Demb

et al., 2001), where different glutamate receptors diversify the

photoreceptor signals into ON and OFF (metabotropic versus

ionotropic receptors) as well as transient and sustained (different

types of ionotropic receptors) signals (Borghuis et al., 2014;

DeVries, 2000; DeVries and Schwartz, 1999; Maple et al.,

1999). Along this line, we found that transient bipolar cells were

more nonlinear compared with sustained cells (Figure 8B), and

only ON bipolar cells showed response saturation (Figure 8D).

Thus, differences in receptor dynamics or in dendritic ion chan-

nels, for example, voltage-dependent sodium channels (Zenisek

et al., 2001), could lead to the different degrees of nonlinearities.

Alternatively, presynaptic mechanisms in the photoreceptors’

synaptic terminals might provide a potential source of nonlinear-

ities. Nonlinear calcium signals have indeed been observed at
somemouse cone terminals (Baden et al., 2013b). Such a nonlin-

earity at photoreceptor synapses would still be consistent with

linear somatic voltage signals that we measured in photorecep-

tors (Figures 7C and 7D). Depending on light level and contrast

range, nonlinear voltage signals and adaptation in photorecep-

tors (Clark et al., 2013; Endeman and Kamermans, 2010; Howlett

et al., 2017) could also contribute to nonlinear spatial integration

in bipolar cells, though our photoreceptor recordings did not pro-

vide evidence for this under the stimulus conditions used here.

Finally, nonlinear integration in bipolar cells could arise from tem-

poral differences between increases and decreases in the pho-

toreceptors’ voltage or glutamate responses, as the temporal

offset would prevent exact cancelation of signals from activated

and deactivated photoreceptors (see Borghuis et al., 2013, for a

similar idea for bipolar-to-ganglion cell signaling). Note, though,

that such presynaptic mechanisms would require that different

photoreceptor types process signals differently (some linearly,

some nonlinearly) and that different bipolar cells pool signals

preferentially from different photoreceptor types, so that the

observed diversity of nonlinear properties among bipolar cells

could be explained.

In addition, species-specific features might influence the

observed nonlinearities. For example, the salamander retina

has more photoreceptor types (Sherry et al., 1998), and bipolar

cell morphology might be more diverse (�12–20 types; Pang

et al., 2004;Wu et al., 2000) compared with themouse retina (Eu-

ler et al., 2014). To further investigate the relevantmechanisms, a

better identification of subtypes of salamander bipolar cells

would be helpful. Unfortunately, despite existing morphological

and physiological characterizations of bipolar cells in the

salamander retina (Hare et al., 1986; Wu et al., 2000), clear iden-

tification procedures of subtypes or unambiguous anatomical or

genetic characterizations are still lacking. Purely functional char-

acterizations of bipolar cells, as also applied in the present work,

can be used to make headway (Asari and Meister, 2012, 2014),

thoughmore detailed characterizations andmorphological infor-

mation will likely be needed to clearly separate types (Franke

et al., 2017; Wu et al., 2000).

Functional relevance of nonlinear computations in
bipolar cells
The retina extracts diverse features from the visual scene, which

are represented by the activity of different types of ganglion cells

at the retina’s output. This feature extraction depends on sub-

units within the ganglion cell receptive field, which correspond

to the presynaptic bipolar cells and which are thought to provide

local contrast information for nonlinear computations (Baccus

et al., 2008; Demb et al., 2001; Freeman et al., 2015; Gollisch,

2013; Gollisch and Meister, 2010; Hochstein and Shapley,

1976a; Liu et al., 2017; Schwartz and Rieke, 2011; Schwartz

et al., 2012). The nonlinear spatial integration we observed in bi-

polar cells could extend this view of subunits (e.g., through local

nonlinearities inside subunits) and provide ganglion cells with

feature sensitivity on a spatial scale below the size of bipolar

cell receptive fields (Figures 7E and 7F). In dim light conditions

near complete darkness, for example, retinal ganglion cells as

well as human observers can report the detection of single pho-

tons by rod photoreceptors (Barlow et al., 1971; Hecht et al.,
Neuron 109, 1692–1706, May 19, 2021 1703
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1941). The high sensitivity is thought to come through nonlinear

signal integration in rod bipolar cells (Berntson et al., 2004; Field

and Rieke, 2002; Sampath and Rieke, 2004). Our findings could

point to a similar functional mechanism during daylight where

local changes that happen below the scale of bipolar cell recep-

tive fields are reported to ganglion cells and the brain. This main-

tains sensitivity to small spatial structures despite the signal

convergence from photoreceptors to ganglion cells and could

be particularly relevant for animals whose retinal cells have large

receptive fields in terms of visual angle (e.g., because their eyes

are small).
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Data and code availability
The recorded voltage traces of bipolar cells and information about the corresponding visual stimuli as well as sample code for anal-

ysis are available at

https://gin.g-node.org/gollischlab/Schreyer_and_Gollisch_2021_salamander_retinal_bipolar_cell_recordings.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All experimental procedures were in accordance with national and institutional guidelines and were approved by the University Med-

ical Center Göttingen (protocol number T11/35). In total, 28 adult axolotl salamanders (Ambystoma mexicanum; pigmented wild-

type, both sexes) of minimum 12months of age (exact birthdates not reported by supplier) were used. Axolotls were held in standard

aquarium basins with burrow-like hide-out places (12-hour light-dark cycle; 1-2 animals per basin), fed daily, and constantly supplied

with filtered water.

METHOD DETAILS

Electrophysiology
The eyes of dark-adapted (�1 h) axolotl salamanders were enucleated, and the vitreous humor was carefully removed. In 19 exper-

iments, the whole retina was detached from the pigmented epithelium, mounted over a hole of 1.5-2 mm diameter on a nitrocellulose

filter membrane and placed ganglion cell-side-down on a 60-channel perforated multielectrode array (MEA) (Reinhard et al., 2014). A

pump outside the setup applied slight suction through the small holes of the perforatedMEA to keep the retina in place, which permits

access to the cells from the photoreceptor-side for intracellular recordings (see Figure S1A). In 9 experiments, the eyes were hemi-

sected and the retinas were placed ganglion cell-side-down into the bath chamber on a nitrocellulose filtermembranewithout aMEA.

During the experiment, the retina was superfused with oxygenated (95% O2 and 5% CO2) Ringer’s medium (110 mM NaCl, 2.5 mM

KCl, 1 mM CaCl2, 1.6 mM MgCl2, 22 mM NaHCO3, 10 mM D-Glucose monohydrate) at �25�C.
To obtain intracellular recordings from bipolar cells, we used sharp glass microelectrodes (BF120-60-10; shaped with a P-97

Brown/Fleming pipette puller, Sutter Instruments), which allowed penetrating the retina with little damage and provided for fairly

long recordings (�0.5-2 hours). Such long recordings were attainable in the salamander retina because of the comparatively large

cell bodies. Microelectrodes were tip-filled with 4% Neurobiotin (dissolved in 0.1M Tris buffer) and backfilled with 3 M KCl solution

(resistance 236 ± 101 MU, mean ± SD). With the help of a 60x objective, the tip of the microelectrode was placed above the outer

segments of the photoreceptors over a MEA recording site that showed high spiking activity to maximize chances of observing gan-

glion cell responses under current injection into the bipolar cell. Inside the bath solution, the pipette offset was nulled and the micro-

electrodewas slowly inserted into the retina (1-mmsteps coaxially to the electrode) until a cell was impaled. The depth of the electrode

tip was monitored with the remote control of the micromanipulator (keypad SM5, Luigs & Neumann). The membrane potential of the

cell was recorded using a MultiClamp 700B amplifier (Molecular Devices, San Jose, CA) and digitized at 20 kHz (Digidata 1440A,

Molecular Devices). For all the described data analyses, the recorded voltage traces were further filtered by a running median (win-

dow = 80 data points) and downsampled to 1-ms resolution by taking every 20th data point.

Cell-type identification
To assess the morphology of the intracellularly recorded cells, Neurobiotin was injected at the end of a recording with current pulses

(blocks of positive and negative pulses of 80-200 pA, 0.5 s current and 2 s break) for 3-7 minutes. Afterward, the retina was carefully

removed from the array, fixated with 4% formaldehyde and further processed with Alexa Fluor 488 Streptavidin (Thermo Fisher Sci-

entific, MA, USA) and with To-Pro-3 (Thermo Fisher Scientific, MA, USA) for nucleus staining. The Neurobiotin-filled cells were

imaged with a confocal microscope, and two-dimensional representations were constructed with maximum projections over manu-

ally chosen regions to best represent the dendrites and axon terminals within the inner and outer plexiform layer (horizontal views, x-y

planes) and the vertical view across the bipolar cell (representation in x-z or y-z planes). For Figure S4A, we traced cells with the semi-

automatic Fiji plugin Simple Neurite Tracer (Longair et al., 2011; Schindelin et al., 2012) and marked the boundaries of the inner

plexiform layer by detecting the nuclei of the ganglion cell layer and of the inner nuclear layer (INL) with the help of To-Pro-3 nucleus

staining. The traced morphologies were further analyzed with MATLAB, and the axon stratification depth within the inner plexiform

layer (IPL) was computed as the distribution of the relative distances along the axon branches to the INL boundary, normalized so that

the boundary to the ganglion cell layer is at a distance of unity (Wu et al., 2000).

When the staining and imaging were successful, bipolar cells were identified based on their bipolar shape, with neurites in the outer

and inner plexiform layer (see Figure S1B). Photoreceptors, on the other hand, could be well recognized by their outer segments, and

amacrine cells showed neurites only in the inner plexiform layer (see Figures S1D and S1F). In some experiments, the staining failed,

or we could not remove the entire retina from the perforated MEA. Thus, we developed additional criteria to identify bipolar cells. We

distinguished bipolar cells (BC) from photoreceptors (PR) by the recording depth (morphologically identified PR were observed

directly when entering into the retina, mainly at a depth < 100 mm, BC at a depth of 141 ± 40 mm, mean ± SD), the receptive field

size (morphologically identified PRs showed smaller RFs, 34 ± 17 mm, than BCs, 76 ± 27 mm,mean ± SD), and the characteristic visual
e2 Neuron 109, 1692–1706.e1–e8, May 19, 2021

https://gin.g-node.org/gollischlab/Schreyer_and_Gollisch_2021_salamander_retinal_bipolar_cell_recordings


ll
OPEN ACCESSArticle
response of photoreceptors to contrast steps. Bipolar cells were distinguished from amacrine cells by observing the response po-

larity of the simultaneously recorded ganglion cells to positive and negative current pulses (50-500 pA, 500 ms duration, 2 s interval,

for 2-4 minutes), which were injected into the intracellularly recorded cell. The spikes of the ganglion cells were extracted by a semi-

automatic custom-made spike sorting program, based on a Gaussian mixture model and an expectation-maximization algorithm

(Pouzat et al., 2002). If the majority of the retinal ganglion cells responded repeatedly to positive current injection, the intracellular

recorded cells were identified as bipolar cells (Asari and Meister, 2012, 2014). If, however, the majority of the ganglion cells re-

sponded to negative current, the intracellularly recorded cells were identified as amacrine cells (Asari and Meister, 2014; de Vries

et al., 2011). In total, we identified 51 cells as bipolar cells and focused our analysis on 48 cells that showed clear preference to either

negative (OFF cells) or positive (ON cells) contrast steps. The remaining 3 cells were excluded due to unclear contrast preference.

Visual stimulation
Visual stimuli were generated by a custom-made software written in C++ and OpenGL and presented on a monochromatic gamma-

corrected white OLEDmonitor (eMagin, 800x600 pixels, 60 or 75 Hz refresh rate). The image of the OLED screen was combined with

the light path of an upright microscope through a beamsplitter and focused through a custom-made optics system and the 4x objec-

tive of the microscope onto the photoreceptor layer. The pixel resolution at the photoreceptor layer was 2.5 mm x 2.5 mm, and the

mean light intensity was 2.5 mW/m2 in the low photopic range.

Analysis of responses to spot stimuli
During the experiment, we first estimated the location over which subsequent spot stimuli were presented (online-determined center

parameters). To do so, we shifted a contrast-reversing spot, whose diameter could be manually increased or decreased, over the

screen until a position and diameter size were found that maximally stimulated the cell (n = 30 cells). Alternatively, we applied online

analysis of responses to spatiotemporal white noise to obtain the receptive field parameters (n = 6 cells; see below).

Estimation of optimal spot size (‘‘local spot’’)
To estimate the spot size that best stimulated a cell’s receptive field center (‘‘local spot’’) for further analyses, we presented spots of

black and white contrast steps (100% contrast) at 11 (n = 29 cells) or 13 (n = 3 cells) fixed diameters (between 10-1200 mm) in random

order, centered over the online-determined location. The spots were presented for 0.5 s on a background of mean light intensity and

separated by 1 s of background illumination. Each spot size was presented on average 8 times. For each trial, we subtracted the

average membrane potential measured over the 200 ms prior to the spot, and for each spot size, we averaged the baseline-sub-

tracted responses over trials. For 4 cells, we presented the spots without an interval of background illumination between individual

spots and only 6 spot diameters (50, 100, 200, 300, 400, 500 mm). These spots reversed contrast (100%) at 1 Hz for 4 s, with different

spot sizes separated by background illumination of 4 s, which was used for computing the baseline membrane potential.

We used the peak of the trial-averaged response per spot size of the preferred contrast and fitted a difference-of-Gaussians model

as described by Borghuis et al. (2013):

VðrÞ = kcenter

�
1� exp

� �r2

2scenter
2

��
� ksurr

�
1� exp

� �r2

2ssurr
2

��

Here V is the peak membrane potential, r is the spot radius, kcenter and ksurr are the maximum response amplitudes of the center and

surround, and scenter and ssurr parameterize the radius of center and surround. For further spot-based analyses (see below), we then

defined the local spot as the spot from the set of tested spot sizes with diameter closest to an estimated receptive field width of 3

scenter (average receptive field width: 104 mm ± 46 mm, mean ± SD, n = 33 cells). For 3 cells, we observed no response saturation or

suppression for larger spot diameters but a rather continuous increase in response with every increase in spot size. For those 3 cells,

the estimated receptive field width from the fit was much larger than for the other cells (> 250 mm). Thus, to study the responses to a

local spot stimulus, we chose for those 3 cells the closest spot size to the diameter computed with spatiotemporal white noise (see

below), which was between 100-160 mm.

Hyperpolarization index
We analyzed the contrast representation with the local spot determined as described above (Figure 1) as well as with a large spot

(500 mm diameter; Figure 8F). For both local and large spots, we computed a hyperpolarization index (HPi) by comparing the

peak membrane potential during preferred contrast (depolarization), Vdep, and the minimum membrane potential during non-

preferred contrast (hyperpolarization), Vhyp:

HPi =
Vdep +Vhyp

absðVdepÞ+ abs
�
Vhyp

�;
where absð:Þ stands for taking the absolute value. The index takes values close to zero for cells that showed equal amounts of hyper-

and depolarization, values near unity for cells that did not show any hyperpolarization (i.e., cells with rectified contrast signaling), and

occasionally negative values for cells that showed stronger hyperpolarization than depolarization.
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Sustained-transient index
We computed the sustained-transient index (STi) from the responses to the local spot of preferred contrast (described above). The

STi was defined as the ratio of the steady-state response (average membrane potential over the last 50 ms of the spot presentation,

Vsteady state) and the peak response (Vpeak):

STi =
Vsteady state

Vpeak

Cells with sustained responses (steady statezpeak) have an index near unity, whereas cells with transient responses (steady

statez0), have an index near zero. Note that the 4 cells recorded with contrast-reversing spots and no intermediate background illu-

mination were excluded here (as well as for the latency calculation) because the response onset to the preferred contrast was

confounded by the offset response to the non-preferred contrast.

Latency
We characterized the latency of the cells from responses to the local spot of preferred contrast (same as for the STi), using two mea-

sures: the response onset and time-to-peak. The response onset (Franke et al., 2017) was defined as the time of the first data point

after spot onset that exceeded 3 standard deviations of the baseline (measured during the last 200 ms of the preceding background

illumination). The time-to-peak was defined as the time from stimulus onset to the time of maximum response (Krieger et al., 2017).

Center-surround index
We computed the center-surround index from the spot stimuli described above by comparing the peak response over all spot sizes

(up to including 500 mm, Vall spots) with the peak response for a large spot of 500 mm (Vlarge spot):

center - surround index= 1� Vlarge spot

Vall spots

The center-surround index takes values close to zero if the response to the large spot was similar to the maximum response over all

spots and values larger than zero if the response was reduced for the large spot.

Spatial nonlinearity index
To test for spatially nonlinear stimulus integration, we presented uniform and spatially structured spots (‘‘patterned spots’’) at the

online-determined center parameters (see above). The patterned spots were obtained by dividing the uniform spot into two halves

(‘‘split spot’’; n = 33 cells), four quarters (n = 33 cells), or into a checkerboard layout with squares of 25 mm (n = 33 cells) or 10 mm (n = 22

cells), with opposite contrast (±100%) in adjacent stimulus subfields (see Figure 7). The uniform spot and the patterned spots were

periodically reversed at 1 Hz for 4 s, followed by 4 s at background illumination. For each voltage trace, the baseline, determined as

the mean voltage over the last 200 ms of the preceding background illumination, was subtracted.

To analyze the responses, we computed the average response for one stimulus cycle of 1 s duration (leaving out the first cycle to

reduce stimulus onset artifacts), subtracted the mean, and performed a Fourier analysis (MATLAB function fft) to obtain a power

spectrum. If cells integrated the stimulus over space nonlinearly, both reversals of the spatial patterns could activate the cell, leading

to frequency doubling (power at 2 Hz) in the response (Hochstein and Shapley, 1976b). For some cells, we further observed a 4-Hz

component in the response to the patterned spots (see Figure S2B).We therefore computed a spatial nonlinearity index (SNi) for each

spatial pattern from the combined power in relevant higher harmonics (2 Hz and 4 Hz) of the spatially structured spot, normalized by

the power at 1 Hz of the uniform contrast-reversing spot:

SNi =
Ppatterned spot ð2 HzÞ+P patterned spot ð4 HzÞ

Puniform spot ð1 HzÞ
The normalization term acts as a generic measure of response strength of the cell (Turner and Rieke, 2016). Note that for 11 out of 33

cells, the uniform contrast-reversing spot used for normalization was presented with a fixed set of diameters (50, 100, 200, 300, 400,

500 mm), which did not always (8 out of 11 cells) contain the exact diameter size of the patterned spots. For those cells, we therefore

linearly interpolated themembrane potential traces from the two uniform spots closest to the diameter size of the patterned spots and

then computed the 1-Hz power to obtain the normalization term. Finally, we chose the maximum SNi over the three spatial patterns

recorded for all 33 cells (spot with two halves, four quarters, and 25 mm checkerboard) as a representation of the cell’s integration

characteristics (Hochstein and Shapley, 1976b). A resulting SNi value near zero means that the cell did not show substantial fre-

quency doubling for any spatial pattern, indicating linear spatial integration.

To study the integration properties under global stimulation, we presented full-field spatial sine-wave gratings with spatial periods

of 80, 160, and 300 mm and 8 equally spaced spatial phases each. The gratings were reversed at 1 Hz for 8 s. For each spatial phase,

we computed the average response per cycle (leaving out the first cycle to reduce stimulus onset artifact) and computed the Fourier

transform as described above to assess the power at 1 Hz and higher harmonics (2 and 4 Hz). For each spatial period, we computed a

spatial nonlinearity index (SNigrating) by summing themean power at 2 Hz and 4 Hz, averaged over all phases, and dividing the sum by

themaximum power at 1 Hz over all phases (Hochstein and Shapley, 1976b; Petrusca et al., 2007). Finally, we selected themaximum
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SNigrating over all spatial periods to quantify nonlinear spatial integration under reversing full-field gratings (Hochstein and Shap-

ley, 1976b).

Prediction of responses to the split spot
To predict the response to a single reversal in the split spot experiment, we multiplied the averaged trace of the uniform contrast-

reversing spot by 0.5 and summed the parts from the first 500 ms (black) and the second 500 ms (white). The prediction for a full

cycle of the reversing split spot was then obtained by concatenating two identical 500-ms predictions for a single reversal. Note

that the predicted trace was identical for the different spatial patterns (spot with two halves, four quarters, 25 mm or 10 mm check-

erboard), because the total amount of black and white contrast inside the receptive field stayed the same. Note also that we did not

need to adjust for response latency, which delays the response to the black or white spot compared to the time of the contrast

reversal, because the same delay is expected for the reversing patterned spot. The response latency thus simply results in the

same temporal phase shift of the periodical signals of the predicted and measured responses under reversing patterned spots.

For comparison with the predicted trace of a given cell, we selected the response trace of the patterned spot (spot with two halves,

four quarters, or 25 mmcheckerboard) with the highest spatial nonlinearity index because this indicated the most balanced activation

by both reversals. To quantify the similarity between the predicted response trace, VpredictedðtÞ, and the measured response,

Vpatterned spotðtÞ, of the cell, we first shifted the predicted response to have the same mean as the measured response in order to ac-

count for drifts in the baseline. We then computed the prediction accuracy as follows:

prediction accuracy = 1�
P

tðVpatterned spotðtÞ � VpredictedðtÞÞ2
P

t

�
Vuniform spotðtÞ � Vuniform spot

�2
;

where Vuniform spotðtÞ is the response trace for reversing uniform spots and Vuniform spot the corresponding temporal average. The mea-

sure is similar to the coefficient of determination, and the adjusted denominator serves to normalize the deviation between predicted

and measured response by the scale of a generic response rather than by the response to the patterned spot itself, which may be

near zero for a linear cell. The similarity measure takes values near unity if the predicted and measured responses match and values

near zero if they are unrelated.

Pharmacology with split-spot stimulation
We pharmacologically blocked GABAergic and glycinergic inhibition by adding strychnine (final concentration 5 mM, S0532-5G,

Sigma-Aldrich) and picrotoxin (final concentration 100 mM, P1675-1G, Sigma-Aldrich) to the oxygenated Ringer’s solution. As for

the patterned-spot experiment (see above), we presented uniform spots and patterned spots composed of two halves (‘‘split

spot’’) and four quarters. We presented the spots before drug application (‘‘control’’), 10 minutes after drug onset (‘‘inhibition block’’),

and 10 minutes after returning back to the standard Ringer’s solution (‘‘wash-out’’). For these recordings, as well as for the measure-

ments under current injection and varying temporal frequencies described below, we optimized the stimulus placement prior to the

actual recording by showing contrast-reversing split spots and carefully searching for a spot position for which the responses to both

reversals were approximately equal.

Current injection with split-spot stimulation
To determine whether the observed nonlinear integration was driven by excitatory or inhibitory inputs, we injected depolarizing and

hyperpolarizing currents (±200, ± 300 and ± 400 pA) while presenting uniform and split spots to assess the effects of altered driving

force of cationic and anionic synaptic inputs (Zaghloul et al., 2003). The spots were presented individually for 0.5 s, with 4 s of ho-

mogeneous background illumination separating successive spot presentations. Current injection started 1 s before spot presenta-

tion, allowing the membrane potential to settle to a new level before visual stimulation, and lasted until 150 ms after spot offset. The

currents were applied in sequence (+200 pA, �200 pA, +300 pA, �300 pA, +400 pA, and �400 pA), and each spot pattern was pre-

sented 2-3 times per current. Prior to this sequence, responses without current injection were obtained with the same visual stimulus

sequence. The baseline membrane potential for each current level was obtained by the average potential during the 200 ms prior to

the spot presentations. For some cells, some currents induced unstable voltage fluctuations and the responses to those currents

were excluded from further analysis. Furthermore, all response traces were filtered with a Gaussian-weighted moving average

(SD = 10 ms, 50 ms window). To correct for the voltage drop across the access resistance of the electrode, we recorded in bridge

mode and in addition corrected the baselinemembrane potential level by the corresponding value in the I-V curve of the electrode, as

measured in the bath after the recording (Ashmore and Copenhagen, 1983; Zaghloul et al., 2003). We then plotted the maximum of

the trial-averaged light response against the corrected baseline membrane potential (see Figure 5C) and fitted a straight line to es-

timate the reversal potential from the line’s intercept with the x axis.

Input resistance
To obtain an estimate of the cell’s input resistance, we plotted the injected current (I, ± 50 to ± 500 pA) against the baselinemembrane

potential level (V) and fitted a straight line, from which we obtained the input resistance as the slope. For cells recorded in bridge
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mode, we used an I-V curvemeasuredwith the electrode in the bath to correct for residual, unbalanced electrode resistance; for other

cells, we subtracted the resistance of the electrode to estimate the input resistance. The values were around 183 MU ± 147 MU

(mean ± SD, n = 31 cells). Note, though, that measurements with sharp electrodes, unlike with patch electrodes, can only provide

a rough estimate of a cell’s input resistance. Furthermore, the set of applied currents varied in our recordings, and some cells

were only recorded with two current values. Nevertheless, the range of obtained input resistances roughly agreed with previously

reported input resistances in light-adapted goldfish bipolar cells measured with patch electrodes (range 115-384 MU; Protti et al.,

2000) and were slightly larger than input resistances previously measured with sharp electrodes in carp and goldfish (range 8-64

MU; Kujiraoka et al., 1988; Nawy and Copenhagen, 1990).

Varying temporal frequencies of split-spot stimulation
As for the patterned-spot experiment (see above), we presented uniform and split spots at different frequencies (0.25, 0.5, 1.0, 2.0,

and 3.75 Hz). For each spot pattern and temporal frequency, we computed the trial-averaged response, from which the amplitude

modulation was calculated as the difference between the response maximum and minimum. The amplitude modulation was a more

stable measure to track the response over the different temporal frequencies than the spatial integration index obtained from the

Fourier transform, as lower temporal frequencies yielded less sinusoid-like responses.

Spatiotemporal white noise analysis
Receptive field estimation

We visually stimulated the retina with binary spatiotemporal white noise in a checkerboard layout, where each square had a size of

30 mm and was updated randomly to black or white (100% contrast; denoted as stimulus values of ±1Weber contrast for analysis) at

30 (n = 8 cells), 15 (n = 8 cells), 10 (n = 2 cells), or 7.5 Hz (n = 1 cell). For cells for which we also recorded natural movies, the squares

had a size of 22.5 mm and were updated at 25 Hz (n = 11 cells) or 12.5 Hz (n = 2 cells) to fit the spatial and temporal resolution of the

natural movies (see natural movie subsection below). Recording duration under spatiotemporal white noise was 23 ± 19 minutes

(mean ± SD). To remove slow fluctuations in the responses, the voltage traces were first de-trended with a high-pass filter (Butter-

worth filter, 0.1 Hz cutoff) and then binned at the temporal resolution of the stimulus by computing the average membrane potential

per time bin.

The spatiotemporal receptive field was computed in the following way: For each time bin, the average membrane potential was

used as a weight for the preceding stimulus sequence (denoted in Weber contrast for each pixel and frame) over two seconds to

compute a response-weighted average of all 2 s stimulus sequences, analogous to the common calculation of the spike-triggered

average for spiking neurons (Chichilnisky, 2001). From the obtained response-weighted average, we determined the pixel with the

largest absolute value over space and time, selected a window around the pixel of 720 mm to the side, and separated the response-

weighted average within this window into the highest-ranked spatial and temporal components by singular-value decomposition

(Gauthier et al., 2009).

To extract the receptive field location and size, we fitted a two-dimensional Gaussian function to the spatial component. We used

the 1.5-sigma contour of the fitted Gaussian for displaying outlines of receptive fields and approximated the receptive field diameter

as the diameter of a circle with the same area as within the 1.5-sigma contour. For some cells, we additionally recorded responses to

spatiotemporal binary white noise with 10 mmx 10 mmsquares to better separate the small receptive field contours of photoreceptors

from bipolar cells. We excluded 3 cells out of 32 cells from the spatiotemporal white noise analysis because of noisy receptive fields.

We detected noisy receptive fields by computing the average pixel intensity within the 3-sigma boundary of the Gaussian fit from the

frame that contained the maximum pixel intensity and checking whether this signal was smaller than the noise level, determined as 3

standard deviations of the values in the spatiotemporal receptive field in the window 2-4 s before the spike.

Output nonlinearity index
To assess the degree of nonlinear contrast representation under white noise stimulation, we analyzed the output function

(‘‘nonlinearity’’) of the linear-nonlinear (LN) model (see Figure 1). The first stage of the model is the linear spatiotemporal filter,

which is obtained from the spatiotemporal receptive field. To avoid noise contributions from pixels outside the receptive field,

we reduced the number of elements in the spatiotemporal filter by setting pixel values of the response-weighted average

outside the 3-sigma contour of the Gaussian fit to zero and re-separating the spatiotemporal receptive field within this window

into the highest-ranked spatial and temporal components by singular-value decomposition. Each component was normalized to

unit Euclidean norm. We assumed space-time separability and applied the spatial and temporal component of the spatiotem-

poral receptive field as separate filters. This yielded good approximations of the full spatiotemporal receptive field and helped

avoid overfitting by strongly reducing the number of filter parameters. To obtain the output function, we first applied the spatial

filter to each frame of the white noise stimulus by computing the scalar product between the spatial filter and the frame’s pixel

contrast values and then convolved the resulting temporal sequence with the temporal filter to obtain the linear prediction of the

LN model, also called the generator signal. Finally, the output function was obtained as a histogram by binning the generator

signal values into 40 bins with equal numbers of data points and averaging the generator signal as well as the corresponding

membrane potential values for each bin.
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To quantify the degree of nonlinearity in the output function, we computed an output nonlinearity index (ONi) by fitting straight lines

separately to the right half of the output function (positive generator signal values) and to the left half (negative generator signal values)

and comparing the corresponding slope values Spos and Sneg:

ONi =
Spos � Sneg

absðSposÞ+ abs
�
Sneg

�
The index takes values close to zero when the two slopes were identical, indicating a linear representation of contrast, whereas

values near unity correspond to nonlinear thresholding (i.e., rectification) of negative values of the generator signal. Negative values

indicate a weaker response to positive generator signals, which can occur for saturating responses (see Figure 8D).

Assessing LN model performance
For 26 cells, we used a non-repeating binary white noise sequence, where 200 segments of 300 stimulus frames duration were

randomly chosen as test data. For each test data segment, the LN model (spatial filter, temporal filter, and output function) was ob-

tained from the remaining data (training data). For each stimulus frame of the test segment, themembrane potential was predicted by

filtering the preceding stimulus sequence and applying linear inter- and extrapolation of the output function to extract the corre-

sponding membrane potential value. The measured and predicted responses were compared by computing the explained variance

(R2) as the square of the Pearson correlation coefficient R, and performance was reported as the average R2 over all test data seg-

ments. For the response traces in Figure 3B, the test segment is shown for which R2 was closest to the average R2.

For 6 cells, we used a non-repeating binary white noise sequence that was regularly interrupted (every 1200 frames) with an iden-

tical sequence of 300 frames (test segment, 10 trials on average). The LN model was obtained from the non-repeated training

sequence, and we predicted the response to the test segment. The prediction performance was computed as R2 between the pre-

dicted and average measured response trace.

Temporal filter latency
The time-to-peak of the temporal filter was approximated by fitting a second-order polynomial to 3 data points (at stimulus bin res-

olution) around the maximum (for ON cells) or minimum (for OFF cells) of the filter and selecting the extremum of the fit (Khani and

Gollisch, 2017).

Biphasic index
Temporal filters were often biphasic with a second peak at longer latency and opposite sign as compared to the first peak. To quantify

this, we calculated a biphasic index as the ratio between the absolute values of the second and first peak of the temporal filter (Khani

and Gollisch, 2017; Zaghloul et al., 2007), where the first peak was defined as the maximum for ON cells and minimum for OFF cells

and the second peak was the extremum of opposite sign. The index takes values close to zero when the second peak was close to

zero (monophasic filter shape) and values of unity when the second peak had the same size as the first peak.

Full-field white noise analysis
For 11 cells, we recorded responses to full-field white noise, which homogeneously activates the entire receptive field in a global

fashion. Light intensity values were randomly drawn from a Gaussian distribution with a standard deviation of 30% around the

same mean light intensity as for the other stimuli and updated at 30 Hz (n = 9 cells) or 25 Hz (n = 2 cells). The stimulus was

composed of a non-repeated intensity sequence (training set), which was regularly interrupted (every 900 frames) by the same,

repeated sequences of 300 frames (test set, presented on average 13 times). For analysis, light intensity values were converted

to Weber contrast (range of �1 to +1). The linear filter and output function of the LN model were obtained from the training set and

computed in the same way as for the spatiotemporal white noise, except that the stimulus sequence was one-dimensional and the

filter therefore only had a temporal component. The linear filter was normalized to unit Euclidean norm. In Figure 8G, we computed

the output nonlinearity index from the output function of the full-field white noise in the same way as described above for spatio-

temporal white noise. To assess the performance of the LN model, the response to the test set was predicted by first convolving

the test stimulus sequence with the filter and then linearly inter- and extrapolating the output function to obtain the corresponding

membrane potential. The performance of the LN model was again quantified by the explained variance (R2) between the predicted

and the average measured response trace.

Natural movie analysis
The natural movies were chosen from the ‘‘CatCam’’ database, where diverse outdoor scenes (e.g., woods, grass) had been re-

corded with a camera mounted on the head of a cat (Betsch et al., 2004) at 25 Hz and a resolution of 320x240 pixels. The movies

had been used previously to study responses in ganglion cells, visual cortex, and lateral geniculate nucleus (Katz et al., 2016; Kayser

et al., 2003; Mante et al., 2008). We chose five different movies of 20-40 s duration. For the projection on the retina, movie pixels

spanned 3x3 pixels of the display projector to match the resolution of the spatiotemporal white noise, andmovies were then cropped

to the 800x600 pixels of the display. The light intensity was scaled so that the mean intensity was the same as for the other visual
Neuron 109, 1692–1706.e1–e8, May 19, 2021 e7



ll
OPEN ACCESS Article
stimuli, and the standard deviation of pixel intensities was near 45%of themean intensity. Movies were displayed at 25 Hz (except for

two cells where the frame rate was reduced to 12.5 Hz) and repeated 9 times on average.

To predict the responses to the natural movies, we applied the LN model as obtained under binary white noise stimulation. The

series of frames of the natural movie, represented by the contrast values relative to the overall mean intensity of the movie (Weber

contrast, range of �1 to +1), was filtered with the spatial and temporal filters, and the filter output was passed through the corre-

sponding nonlinearity, using inter- and extrapolation, as described above. Themodel performance wasmeasured by the R2 between

the averaged movie response and the prediction. From a total of 13 cells, we excluded 3 cells with noisy receptive fields (see spatio-

temporal white noise section). Additionally, we excluded 1 cell and the responses to 2 movies from 2 cells, where the baseline mem-

brane potential under the natural movie (average over the last 10 s) had increased by more than 20 mV compared to the starting

voltage level under spatiotemporal white noise (average over the first 10 s). For some cells, we observed a drift in the overall response

amplitude between the natural movie and the spatiotemporal white noise. For better visual comparison of the temporal profile of

response and prediction, we therefore corrected for those offsets by normalizing the displayed predicted traces in Figure 4C to

have the same mean and standard deviation as the response to the natural movie.

To quantify the nonlinearity of contrast representation under natural movies, we computed an output nonlinearity directly for the

natural movies in the same way as for the white noise data, but using the temporal and spatial filters obtained from white noise (Heit-

man et al., 2016). Thus, we related the filter output when using the movie as a stimulus to the corresponding measured membrane

potential via a histogram (40 bins). The degree of nonlinearity was then quantified by computing the ONi for this output function as

explained above. Note that this nonlinearity obtained directly from the natural movie was not used for the response prediction via the

LN model.

Oscillation frequency
To analyze oscillations that were observed in some recordings, we computed the oscillation frequency from responses to a full-field

step in light intensity, where illumination changed alternatingly from background to white (+100% contrast) or to black (�100%

contrast), each for 1 s (Figure S4D). For each trial, we subtracted the average membrane potential measured over the 200 ms prior

to the light step and computed the average response trace over trials.We applied an analysis window of 800ms, ranging from 250ms

after stimulus onset to 50 ms after the end of the contrast step and used the mean-subtracted average response to the preferred

contrast. The oscillation frequency was determined as the frequency with maximum power, as assessed by Fourier analysis of

the response trace in the analysis window.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests for significance were performed with a two-sided Wilcoxon rank sum test (ranksum function in MATLAB) when sam-

ples were independent (Figures 8D) andwith a two-sidedWilcoxon signed rank test (signrank function inMATLAB) for paired samples

(Figure 7B; Figure S2D). Correlation coefficients between two variables were computed as the Pearson correlation coefficient (corr-

coef function in MATLAB), whose significance was assessed by a t test. Statistical significance was defined by a p value < 0.05. The

statistical details (correlation coefficient, p value, sample size n) are provided in the figures, figure legends, or the text of the Results

section. The specific meaning of the sample size n and the definition of center and dispersion measures are clarified when used. The

inclusion and exclusion criteria for recorded cells are described in the following subsections of the STAR Methods: Cell-type iden-

tification, Sustained-transient index, Spatiotemporal white noise analysis, and Natural movie analysis.
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