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Retinal receptive-field substructure: scaffolding
for coding and computation
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Highlights
Visual stimulus encoding by the retina
is not fully captured by the center-
surround receptive fields of retinal
ganglion cells. Mounting evidence of
nonlinear spatial signal integration
under natural stimuli and of specific visual
functions solved by distinct ganglion cell
types indicates the need to better under-
stand receptive-field substructure.

Nonlinear spatial integration can be
captured by subdividing ganglion cell
The center-surround receptive field of retinal ganglion cells represents a funda-
mental concept for how the retina processes and encodes visual information.
Yet, traditional approaches of using the receptive field as a linear filter to inte-
grate light intensity over space often do not capture the responses of a ganglion
cell to complex visual stimuli. Thus, models with local nonlinearities in subunits
of the receptive field or with local temporal dynamics are emerging to better
reflect relevant aspects of retinal circuitry and capture stimulus encoding.
Here, we review recent efforts to identify such receptive-field substructure and
evaluate its role in visual stimulus encoding. The concomitant development of
new computational tools may pave the way toward a model-based, functional
approach to retinal circuit analysis.
receptive fields into subunits, which are
thought to correspond to presynaptic
bipolar cells. Several statistical and
model-based methods have recently
been developed to identify the subunit
layout from spiking responses of
ganglion cells to visual stimuli.

The subunits provide scaffolding for
retinal computations, which may act
through local adaptation and inhibition
to shape responses to dynamic stimula-
tion and to extract specific visual
features.
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Beyond receptive-field filtering: aligning circuit complexity and functional diversity
The sense of vision in vertebrates relies on a range of different computations. These distill relevant
information from the incoming light patterns while discarding irrelevant components and dynami-
cally adapting to the recently encountered structure of inputs. It is now well established that the
underlying computations begin in the retina [1]. In this neural network, a multitude of different
neuron types (more than 100 in the mouse, [2]), form dozens of parallel information channels
[3–5] to extract various visual features, such as lateral [6,7], looming [8], and local motion [9,10]
as well as local contrast [11] and color [12].

Understanding what the diversity of neural hardware is for, and how it implements different
computations, requires going beyond the often-held view that themain function of the retina is to filter
incoming images by the center-surround receptive fields of ganglion cells. Instead, nonlinear interac-
tions, local dynamics, and signal gating within the receptive field have become a focus of interest,
requiring new approaches and techniques to dissect the substructure of receptive fields and the
signal processing within [13]. These developments occur in a tight interaction of experimental inves-
tigations with advances in computational data analysis and retinal circuit models. Among the primary
overarching goals are to: (i) determine what is needed to describe and predict retinal responses to
natural stimuli; and (ii) infer the structure and operations of the presynaptic circuitry that shape the
responses of the different output channels of the retina.

In this review, we highlight recent progress in analyzing the substructure of retinal ganglion cell
receptive fields.We focus on the characteristics and functional roles of nonlinear signal integration
over space and of local temporal dynamics within the receptive field. In doing so, we emphasize
new computational techniques to infer retinal circuit structure from recordings of the spiking
activity of ganglion cells. The new methodology resonates well with model-based analyses in
other sensory areas and with current developments in the field of artificial neural networks.
Given the preserved general structure of the retina across vertebrate species and themany similar
430 Trends in Neurosciences, June 2022, Vol. 45, No. 6 https://doi.org/10.1016/j.tins.2022.03.005

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://orcid.org/0000-0003-0836-1663
https://orcid.org/0000-0002-2773-6785
https://orcid.org/0000-0003-3998-533X
https://twitter.com/TimGollisch
https://doi.org/10.1016/j.tins.2022.03.005
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tins.2022.03.005&domain=pdf
CellPress logo


Trends in Neurosciences
OPEN ACCESS
basic operations, the presented examples are drawn freely from retinas of different vertebrates,
mostly monkey, mouse, and salamander.

The center-surround receptive field in the retina and its challenges
The retina transduces incoming light into neuronal signals in its photoreceptors and processes
these signals through its network of interneurons (bipolar, horizontal, and amacrine cells) before
the retinal ganglion cells send the messages from the retina about the visual world as spike
patterns to various brain regions (Figure 1A). The function of this network is often summarized by
referring to the famous center-surround structure of ganglion cell receptive fields (Figure 1B), in
particular in the simplified views of general neuroscience textbooks and in research that considers
processing in downstream brain regions. This is perhaps not surprising, given the long and
successful history of research on receptive fields, from their application as spatial filters to predict
responses to moving light spots [14] to their utility for efficient stimulus coding [15].

However, many aspects of retinal stimulus encoding cannot be explained by stimulus filtering with
center-surround receptive fields. The perhaps best-known example are the so-called ‘Y-type
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Figure 1. Retinal circuitry and standard models of spatial processing. (A) Schematic retinal circuitry, comprising photoreceptors (P), bipolar cells (B), two types of
inhibitory interneurons [horizontal (H) and amacrine (A) cells], and a ganglion cell (G). Visual information propagates from top to bottom. The output is the spiking response of the
ganglion cell, as indicated here by an extracellularly recorded voltage trace. (B) Ganglion cell center-surround receptive field, depicted here as a difference-of-Gaussians model.
The spatial filter that comprises the receptive field contains a positive 2D Gaussian function for the center (orange, shown here as a 1D Gaussian cross-section) and a
concentric, but broader negative Gaussian function for the surround (blue). The filter signals, obtained as weighted sums of pixel values, are added, yielding the combined
receptive-field activation. Center and surround are attributed to excitatory bipolar cells and inhibitory interneurons, respectively, as indicated by the corresponding colors. Top:
illustration of center and surround as 2D outlines overlaid on a visual stimulus. (C) Spatial linear–nonlinear (LN) model. First, a spatial filter, representing the receptive field of the
ganglion cell, is applied to the visual stimulus, corresponding to a weighted summation of stimulus pixel values. The filtered signal is subsequently passed through a nonlinear
transformation to produce the response of the ganglion cell, measured, for example, as the evoked firing rate. (D) Subunit model. Multiple subunits act as spatial filters with
subsequent nonlinearities. Their responses are summed in a weightedmanner and passed through a final nonlinearity to produce the response of the ganglion cell (e.g., firing rate).
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ganglion cells’, first found in the cat retina [16], which respond strongly (and with frequency
doubling) to contrast-reversing spatial gratings with no net change in illumination over the recep-
tive-field center or surround. This demonstrates that activation and deactivation from brightening
and darkening do not cancel out for these cells but are combined nonlinearly over space.

More general analyses of whether receptive-field substructure beyond the center-surround shape
is relevant under different stimulus scenarios typically require amodel-based approach. The recep-
tive field, often extended to contain a temporal dimension, is then used to filter the applied visual
stimulus to predict responses for comparison with actual recorded data. In its most prominent
model version, receptive field-based filtering is followed by a nonlinear transformation of the filtered
signal, which can prevent negative predicted firing rates as well as implement thresholding and
saturation of responses. This is known as the linear–nonlinear (LN) model (Figure 1C), which has
become, in some respects, a standard model for retinal ganglion cell responses and forms the
backbone of many data analysis approaches and extended computational models.

Yet, the receptive field-based LN model is often not a good predictor of responses for many
ganglion cells, in particular when natural stimuli are considered. Under flashed natural images,
responses of many ganglion cells in both mouse [17] and salamander [18] deviate from LN
model predictions. Furthermore, these deviations systematically depend on the spatial contrast
of the images inside the receptive field. Similarly, in the macaque retina, models based on
receptive-field filtering fail to accurately predict responses of parasol cells to natural movies
[19]. OFF parasol cells, in particular, are sensitive to the fine spatial structure of natural stimuli,
which is not captured by the LN model [20].

Receptive-field subunits and their functional relevance
The primarymodel extension to go beyond receptive-field filtering and incorporate sensitivity to spa-
tial structure within the receptive-field center is to subdivide the center into smaller subunits,
giving rise to a ‘subunit model’. Each subunit acts as an independent spatial filter, the signal of
which is nonlinearly transformed (e.g., rectified) before summation into the integrated ganglion cell
activation (Figure 1D). The subunits are generally believed to correspond to the bipolar cells that pro-
vide the excitatory input to ganglion cells, because this excitation alone already displays nonlinear
spatial integration [21]. Signal transmission between bipolar and certain ganglion cells in the
mouse retina has indeed been found to be nonlinear [22,23]. However, this does not exclude
that, for other types of ganglion cells or under different illumination conditions, subunits might reflect
other (e.g., amacrine) cells or correspond to larger groups of bipolar cells, perhaps electrically
coupled [24]. In addition, nonlinearities at the input stage to bipolar cells [25] and in photoreceptor
signaling [26,27] may contribute to nonlinear spatial integration upstream of bipolar-cell subunits.

Sensitivity to finely structured stimuli and motion signals
The subunit structure of receptive fields helps explain the different functional properties and specific
computations of retinal ganglion cells [28]. Most prominently perhaps, rectified subunit signals
mediate sensitivity to high spatial frequencies and to small objects below the scale of ganglion
cell receptive-field centers [16,23,29]. This is achieved by communicating local changes in illumina-
tion (Figure 2) even without net luminance changes across the receptive field. The sensitivity to fine
spatial patterns also leads to a joint encoding of luminance and spatial-contrast information
[17,18,30] and may contribute to monitoring the proper focusing of images onto the retina [31].

Furthermore, subunits are particularly important for motion processing. Subtle object or texture
motion that changes the illumination pattern over individual subunits can then trigger responses
even when a linear receptive field would not be activated. This may contribute to the perception
432 Trends in Neurosciences, June 2022, Vol. 45, No. 6
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Figure 2. Schematic of ganglion cell processing with and without subunits. Top: linear–nonlinear (LN) model, with receptive field as a spatial filter. Bottom: subunit
model, with multiple subunits as filters. The receptive field and the subunits evaluate an image in confined regions (left) to extract mean light-intensity signals. In the subunit
model, the small size of the subunits can resolve spatial structure of the stimulus within the receptive field of the ganglion cell. The filtered signals generate activation signals,
depicted here as step-response curves (blue, center), corresponding to image presentation after homogeneous background light intensity. Positive activation here
corresponds to darkening in the spatial-filter region (OFF-cell responses). The subunit responses are rectified individually before summation, which here leads to a
stronger ganglion cell response (green, right) than in the LN model.
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of contrast-mediated motion signals (‘second-order motion’) [32] and to detecting subtle
fixational eye movements [33,34]. Combining rectification of bipolar-cell subunit signals
with gap-junction coupling between bipolar cells can further enhance sensitivity to specificmotion
signals [24,35], which is hypothesized to enhance the information about future locations of
continuously moving objects [36]. Even for ON–OFF direction-selective ganglion cells, where
much of the computation of directionality occurs in the presynaptic starburst amacrine cells,
the crucial integration of excitatory and inhibitory inputs occurs locally along the dendritic tree
of the ganglion cell, providing a subunit architecture to the motion processing [37,38].

Spatial nonlinearities of inhibitory signals
For some ganglion cells, the subunit-mediated sensitivity to texture motion also pertains to inhibi-
tory signals from the receptive-field periphery. This can lead to response suppression under global
image motion and thereby specific sensitivity to local object motion in object motion-sensitive
ganglion cells described in the salamander and rabbit retina [9] and in the so-called ‘W3 ganglion
cells’ of the mouse [10]. For other cells, the motion sensitivity in the receptive-field periphery results
in disinhibition and increased responsiveness after a global image shift [39]. This exemplifies that
nonlinear spatial integration and subunit models also relate to inhibitory signaling in the retina and
thereby have a role in gating visual information.

Spatial integration in the suppressive surround of salamander ganglion cells appears to be similarly
nonlinear as in the receptive-field center, albeit on a larger spatial scale [40], suggesting that
amacrine cells might provide relevant nonlinearities. In mouse retina, the possibility to
optogenetically stimulate specific amacrine cell types was recently used to directly probe signal
transmission to ganglion cells. This revealed strong rectification of the functionally crucial inhibition
that direction-selective ganglion cells receive from starburst amacrine cells [41,42], whereas other
amacrine cells were found to transmit signals linearly [43,44].
Trends in Neurosciences, June 2022, Vol. 45, No. 6 433
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With inhibition being prevalent not only in the receptive-field surround, but also in the center,
one may wonder why the subunit models discussed above are often considered without
inhibitory elements. One answer is that local inhibitory effects can be part of the subunits, so
that the latter correspond to bipolar cells together with local modulations by inhibitory amacrine
and horizontal cells. These may add a surround component to the subunits, modulate their
temporal signaling, affect the nonlinearity of signal transmission to the ganglion cell, or shape
the adaptation characteristics. The view of subunits as ‘effective bipolar cells’, the processing
of which also comprises inhibitory effects, is reinforced by the finding that many local inhibitory
interactions occur directly at the bipolar cell synaptic terminal [45,46], where they fundamen-
tally shape the temporal and spatial characteristics of the subunit signal received by the
ganglion cell [47].

An example of local inhibition fundamentally shaping the functional characteristics of a ganglion
cell is provided by the widely studied transient OFF alpha ganglion cell of the mouse retina.
Even though flashed natural images expose little deviation from linear spatial integration for
these cells [17], stimuli with more complex spatiotemporal structure can reveal nonlinear
local processing by crossover inhibition, which couples the ON and OFF signaling pathways
in the retina [48,49]. Here, it supplies ON-pathway inhibition under light increments to an
OFF-type ganglion cell. This is thought to let the cell differentiate between looming and trans-
latory motion of a dark object, given that responses are suppressed for the latter because of inhi-
bition triggered by the brightening at the trailing edge of the object [8]. For saccade-like image
transitions, the local crossover inhibition, in conjunction with serial inhibition, has also been
suggested to underlie a particular sensitivity to recurring image patterns, which has been observed
in these cells [50].

Accessing the subunits for studying retinal computations
The examples discussed above show how inhibition can suppress or gate subunit signals in a
selective manner, implementing computations that are not captured by the shape of the
center-surround receptive field. This suggests viewing the layout of bipolar-cell subunits as
scaffolding for local signal processing, setting up the spatial layout for operating on the visual
input. The types and dynamics of the operations, from simple nonlinear transformations to com-
plex inhibitory interactions, then determine the computation performed by the ganglion cell and,
thus, its potential function for visual processing. Therefore, access to the subunit layout could be
an important step for analyzing the details of retinal computations either through model-based
data analysis or by targeting individual subunits for stimulation in experiments.

However, experimental complications arise from the relative inaccessibility of bipolar cells. These
cells are buried in the middle layers of the retina; they are mostly nonspiking and receive much of
their functionally relevant inputs at their synaptic terminals. Some progress has been made by
applying fluorescent reporters to monitor vesicle fusion [51,52] or glutamate release [53] at the
bipolar cell terminal. This has allowed observations of rectified transmitter release from certain
bipolar cells [22] and characterizations of the functional diversity of bipolar cell types and of the
role of inhibition in shaping this diversity [47,54].

Nonetheless, for analyzing how ganglion cells integrate bipolar cell input, alternatives to direct
measurements of bipolar cell signals are desirable. A promising approach arises from currently
developed methods for model-based inference of bipolar-cell subunits via the relatively easy-
to-record ganglion cell activity. By aiming at identifying bipolar cell receptive fields through their
effects on the output of the retina, this approach may provide a ‘virtual microscope’ for studying
the layout of bipolar cells and their functional connections to ganglion cells.
434 Trends in Neurosciences, June 2022, Vol. 45, No. 6
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Inference of subunits with multilayered models
LNLN models
Perhaps the most straightforward approach to identifying and characterizing receptive-field
subunits is to set up a subunit model and fit the parameters to recorded data. The model
typically comprises two stacked layers of LN model-like components, one for the subunits
and one for the subsequent signal summation and final transformation (Figure 1D), and, there-
fore, is also called ‘LNLN model’. Although the general idea of subunit models dates back to
the original observation of nonlinear spatial integration [16], methods for identifying concrete
subunit layouts from experimental data emerged only relatively recently. One approach is to
use anatomical knowledge to structure the model, for example, by determining subunit
positions and weights according to the reconstructed dendritic tree of a ganglion cell. This
has been used to demonstrate that the concrete subunit layout matters for accurate response
predictions [23]. Similarly, prior assessment of the spatial layout of the relevant photoreceptors,
as is possible in the peripheral primate retina [55], has been exploited to constrain LNLN
models [56].

However, without knowledge of the anatomical details for a given cell, the difficulty of obtaining a
fitted LNLN model lies in finding a workable parameterization, particularly since the number and
locations of subunits are unknown. To reduce model complexity, some studies have focused
on a single spatial dimension by applying stripe-like visual stimuli and thereby successfully fitted
LNLN models to ganglion cells recorded from salamander retina [57,58]. The extracted subunits
(Figure 3A) displayed response characteristics and receptive fields similar to bipolar cells that had
been independently recorded [57,58]. These findings support the notion that fitting subunit
models can be used to infer bipolar cell properties. If the number of parameters is further reduced
by assuming regular spacing and identical shapes of subunits, the LNLN model can even be
extended to include adaptation-like feedback components [58]. A different application of LNLN
model fits is to separate the temporal characteristics of ON-type and OFF-type inputs or of excit-
atory and suppressive receptive-field components, as has been shown for mouse retinal ganglion
cells [59]. Combining the modeling of such different input types with a spatial layout of subunits
will be an exciting, yet challenging future direction.

Convolutional neural networks
Fitting complex parameterized models received a push with the advent of deep learning-inspired
artificial neural networks. In particular, convolutional neural networks enjoy current popularity,
owing to their versatility and computational efficiency. The convolutional operations in these net-
works (applying the same filtering at all locations of the input space) are reminiscent of how an in-
dividual bipolar cell type (or another retinal neuron type) covers visual space with its receptive
fields, applying nearly the same signal processing at different spatial locations. Thus, not surprisingly,
retinal ganglion cells were among the first applications of convolutional neural networks to perform
data-driven circuit modeling [60–62].

Using two convolutional layers, these networks can outperform standard receptive-field models,
such as the LN model, in predicting responses of salamander ganglion cells to new stimuli,
because the multilayered structure captures essential nonlinear substructure of ganglion cell
receptive fields. Moreover, hidden units can match certain properties of bipolar and amacrine
cells, such as localized center-surround receptive fields [60,61] (Figure 3B). When trained on
salamander ganglion cell responses to natural stimuli, the models are also able to reproduce
specific response features beyond what can be explained by spatiotemporal filtering [60,62].
However, despite these agreements, the derived networks have so far remained somewhat
abstract, with no direct correspondence to circuit structure or subunit layout.
Trends in Neurosciences, June 2022, Vol. 45, No. 6 435
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Figure 3. Examples of computationally inferred subunits from different methods. (A) Spatiotemporal subunits with one spatial dimension obtained from fitting a
linear–nonlinear–linear–nonlinear (LNLN) model to recorded salamander ganglion cell responses under stimulation with flickering stripes. Subunits in the example are OFF-
type, with localized preference for negative contrast (blue), preceded and flanked by preference for positive contrast (red), corresponding to biphasic temporal filtering and a
spatial antagonistic surround, respectively. (B) Spatiotemporal subunits, corresponding to receptive fields of convolutional filters from a two-layer convolutional neural
network, fitted to recorded salamander ganglion cell responses under natural stimulation. Receptive fields are separated into a spatial component (red/blue: positive/
negative contrast preference) and a temporal sensitivity trace below. (C) Spatial subunits obtained by analyzing salamander ganglion cell responses to spatiotemporal
white noise with spike-triggered non-negative matrix factorization. The obtained spatial modules (white indicates zero; darker shades indicate more positive entries) can
be separated into true subunits (blue module frames) and noise modules (black frames) according to the spatial autocorrelation of the modules. The recovered
subunits are fitted by 2D Gaussian profiles (blue ellipses, corresponding to 1.5-sigma contours), which roughly tile the Gaussian fit to the receptive field (black ellipse).
(D) Spatial subunits obtained by spike-triggered clustering, here with six clusters, with data recorded from a macaque ganglion cell under spatiotemporal white-noise
stimulation. Adapted from [57] (A), [60] (B), [68] (C), and [70] (D).
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Inference of subunits by statistical analyses of successful stimuli
Structure of spike-triggered stimulus ensembles
An alternative to fitting a complete subunit model is to extract subunits from statistical analyses of
the stimulus–response relationship of a ganglion cell. The basic idea is to record ganglion cell re-
sponses to spatially structured stimuli and investigate which spatial patterns make the cell fire.
The set of these successful stimuli is often called the spike-triggered stimulus ensemble (STE),
and the search for subunits then amounts to identifying the underlying structure of the STE
(Figure 4). This often takes the form of a dimensionality-reduction analysis [63], for which a
wide arsenal of general techniques is already available. However, to avoid confounding structure
in the STE from prior correlations in the applied visual stimuli, these techniques typically rely on
stimuli with white-noise statistics, which may not drive cells strongly if a finely structured layout
is used, thus requiring long recordings.
436 Trends in Neurosciences, June 2022, Vol. 45, No. 6
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Figure 4. Effect of subunits on the
spike-triggered stimulus ensemble
(STE). Whether two stimulus pixels are
in the same subunit influences the joint
distribution of their values in the STE,
as exemplified here by two simple
models (top). Stimuli are normally
distributed contrast values of two
pixels. In the first model (left), the values
are individually rectified and then
summed into a spike probability,
representing pixels in distinct subunits.
In the second model (right), the two
pixel values are summed before
rectification, representing pixels within
a subunit. Spikes are generated by a
binary random process. For each
model, scatter plots at the bottom
display the set of applied stimuli (black
dots) and stimuli that generated spikes,
that is, the STE (white dots). The two
STEs exhibit different distributions,
which forms the basis for the inference
of subunits with statistical methods. In
particular, the STE of the first model
contains a wider range of stimuli with
opposing contrast values.
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One common technique for extracting relevant dimensions of the STE is spike-triggered
covariance analysis, which is essentially a form of principal component analysis of the STE
[64,65]. However, when applied to data recorded from the salamander retina under spatiotempo-
ral white noise, the resulting filters are generally not localized subunits, but rather span the entire
receptive field, reminiscent of a Fourier decomposition [57,66–68]. Appropriate mixing of these
filters might help recover localized components [67], but may be limited by noise in the originally
identified filters and, to our knowledge, this has not yet been thoroughly tested on experimental
data.

Spike-triggered non-negative matrix factorization and clustering
Amore direct identification of subunits can be achieved by analyzing the STE with spike-triggered
non-negative matrix factorization (STNMF) [68]. Here, multiple spatial filters are extracted under
the constraint of having no negative elements. Non-negative matrix factorization is known to
provide parts-based representations of complex data [69], which helps here to uncover local
structure in receptive fields. In fact, subunit filters obtained for salamander ganglion cells were
found to be localized (Figure 3C) and to match the receptive fields of simultaneously recorded
bipolar cells [68], supporting the idea that bipolar cell layouts can be inferred from ganglion cell
recordings. Note, however, that subunits are derived with no negative entries, and any structure
with opposing sign, such as an antagonistic surround, is not recovered by this method.

A related approach is to find the elementary stimulus patterns that contribute to generating spikes
by clustering analyses of the STE. The idea is that activation of one or potentially a few subunits
must have been sufficiently strong to trigger a spike, while other subunits remained subthreshold.
The centroids of a soft clustering of the STE from macaque OFF parasol cells indeed display
Trends in Neurosciences, June 2022, Vol. 45, No. 6 437

CellPress logo


Trends in Neurosciences
OPEN ACCESS
spatially localized structure as expected for receptive-field subunits [70] (Figure 3D). Moreover,
the spike clustering can be viewed as a step in the maximum likelihood fit of an LNLN model
and, thus, directly yields a subunit model for predicting responses to spatially structured stimuli.

Regardless of themethod, inferred subunit layouts so far typically show subunits that more or less
tile the receptive field with little overlap. This is consistent with excitatory inputs dominated by a
single type of bipolar cell, as appears to be the case for some ganglion cells [71]. Yet, it raises
the question whether layouts with two (or more) bipolar cell types, each arranged in its own
mosaic pattern, could also be handled. Analyses of model simulations suggest that STNMF
may, in principle, be able to extract subunits with considerable overlap [68], but evidence
for this from experimental data is still lacking. One possibility is that extracted subunits reflect
the bipolar cell type that provides the strongest input. It might then be interesting to explore
whether stimuli can be modified (e.g., via ambient light intensity or spatial, temporal, or chromatic
characteristics) to switch the dominant input. This might allow reconstructing different bipolar cell
mosaics in different stimulation contexts.

Temporal dynamics of subunits
Functions and mechanisms of local and global adaptation
The fact that ganglion cells integrate over many bipolar cells not only breaks up spatial integration
into subunits, but is also important for understanding the functional consequences of adaptation.
For example, retinal ganglion cells adapt their sensitivity to ambient light intensity and to visual
contrast. Conceptually, adaptation could occur locally, at the level of individual subunits before
their signals are integrated by the ganglion cell, or globally after stimulus integration, at the level
of the entire ganglion cell receptive field (Figure 5). The functional relevance becomes clear, for
example, when considering a small object somewhere in the receptive field. Global, but not
local, adaptation then reduces sensitivity for a second object irrespective of its location. Further-
more, for a moving object, global adaptation is already triggered when entering the receptive field
and thereby reduces responses to the subsequent path through the receptive field, a mechanism
that has been suggested to counteract temporal delays of signal transduction for moving objects
(‘motion anticipation’; Figure 5A) [72]. By contrast, local adaptation of individual subunits
maintains sensitivity at other locations within the receptive field or for novel objects moving
along different paths (Figure 5B,C). Thus, whether adaptation occurs globally on the spatial
scale of the entire receptive field or locally for individual subunits is crucial for understanding the
function of a ganglion cell in response to dynamic spatial stimuli.

For retinal contrast adaptation, mechanisms that could support local or global adaptation
have both been identified. A primary contribution to contrast adaptation is thought to occur at
the bipolar-to-ganglion cell synapse, where synaptic gain is altered by synaptic depression
[73,74] and inhibition onto the synaptic terminal [75,76]. Computational models of vesicle deple-
tion or presynaptic inhibition have successfully captured much of the adaptive dynamics of exci-
tation in certain ganglion cells [76,77]. Owing to the local origin at the synaptic terminal, this
adaptation might be thought to be local and restricted to individual subunits. Yet, presynaptic in-
hibition need not be locally confined and could act on multiple subunits. In addition, even local
synaptic depression may influence sensitivity throughout the receptive field of the ganglion cell
if the reduction in vesicle release leads to a postsynaptic hyperpolarization that affects the entire
ganglion cell. Thus, it remains an open question whether gain changes at the bipolar cell terminal
contribute to local or global adaptation. A clearer contribution to local adaptation comes from
contrast-induced gain changes in the membrane potential of bipolar cells themselves. This has
been observed in the salamander retina [78], although not for all bipolar cells [79]. Conversely,
unambiguous global adaptation may follow from mechanisms triggered by the activity of the
438 Trends in Neurosciences, June 2022, Vol. 45, No. 6
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Figure 5. Functional consequences of local and global adaptation. Simulated responses to different motion stimuli
(left) of three subunit models with no adaptation, global adaptation, and local adaptation (top). All models simulate multiple
bipolar cells (only three are depicted) connected to a ganglion cell. Bipolar cells are simulated by applying a spatial
Gaussian filter and a monophasic temporal filter, followed by a rectification. Ganglion cells sum the results and apply
another rectification yielding a firing rate as output. Global adaptation is implemented as multiplicative feedback by
applying an exponentially decaying filter to the model output, followed by a sigmoidal nonlinearity. Local adaptation occurs
through analogous multiplicative feedback on the bipolar-cell level. Simulated firing rates (blue) are shown in response to
objects moving through the receptive field, with the actual configurations shown on the left. Black squares and arrows
show objects and their trajectories. Red ellipses correspond to the 1.5-sigma contour of the receptive field. Times t1 to t4
indicate when the objects enter the first or leave the last subunit, respectively, as indicated in the plots. When a single
object moves through the receptive field (A), global adaptation leads to a rapid response decay, causing the peak firing
rate to occur well before the object is halfway through the receptive field. This has been associated with the phenomenon
of motion anticipation [72] and is not apparent for the models with no adaptation or with local adaptation. By contrast,
when two objects successively move through the receptive field, local adaptation leads to distinct responses, depending
on whether the two objects move along different trajectories (B) or along the same trajectory (C), yielding reduced
response amplitude for the latter. By contrast, the models with no or global adaptation each display similar responses for
these two scenarios.
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ganglion cell itself, such as inactivation of sodium channels [80] or recruitment of potassium cur-
rents [81]. Which mechanisms dominate for a given cell and whether this depends on stimulus
context, such as light level, is largely unknown.

Experimental tests of local and global contrast adaptation
Functionally, only a few studies have probed the spatial scope of contrast adaptation so far. A
study of cross-adaptation in rabbit retina, which used switching stimulation from one small loca-
tion to another within the receptive field of a recorded ganglion cell, showed transient increases in
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Outstanding questions
Howdo the differentmethods developed
for identifying subunits of retinal ganglion
cells compare? Can different methods
be combined to arrive at a consensus
of inferred subunit layouts? How robust
are the different methods across
different ganglion cell types, different
animal species, and different illumination
conditions?

What is missing in subunit models
with nonlinear spatial integration to
fully capture ganglion cell encoding
of flashed natural images, for which
temporal dynamics may be ignored?

The implementation of specific
computations by retinal circuits, such
as the detection of different types
of motion signals, is often explained
through conceptual, proof-of-principle
models. How can such conceptual
models be combined with concrete
subunit layouts of individual cells to
explore the circuit–function connec-
tion in more detail?

Nonlinear signal transformations
may already occur in photoreceptors
or at the inputs to bipolar cells.
How important are these early
nonlinearities for stimulus encoding
by ganglion cells? How could they
be incorporated into stimulus–
response models?

Are subunits a relevant concept for the
ganglion cell receptive-field surround?
How could one extract information
about surround subunits from experi-
mental data? Would these subunits
correspond to bipolar cells or to
amacrine cells?

What makes some ganglion cells
adapt locally to visual contrast and
others globally? What mechanisms
are involved and what specific functional
consequences arise?

How can inhibitory interactions be
integrated into subunit models
and what would be the ways to
obtain interaction parameters from
experimental data?

After fitting abstract network models,
such as convolutional neural networks,
to retinal data, can the obtained
network structure be related to actual
circuit components of the retina?
firing rate after each switch [82]. This can be interpreted as being caused by local adaptation,
since the new stimulus location after the switch is not yet adapted. However, the fast timescale
of the transient firing rate increases might also be explained without any adaptation. Instead, non-
linear spatial integration can boost activity during the brief transition time when activation from one
location is ramping up while activation from the other has not yet fully decayed [83].

Local adaptation can also be observed in the object motion-sensitive cells discussed above,
which adapt to continuous object motion, but transiently regain sensitivity when the object motion
is detected by different regions inside the receptive-field center [84]. Other studies of ganglion
cells in salamander [83] and mouse retina [85] have observed that changes in temporal filtering
and sensitivity following locally restricted switches in visual contrast can, for different cells,
occur either locally, confined to the region of the contrast switch, or globally over the entire recep-
tive field (Figure 6). Thus, as with linear and nonlinear spatial integration, the occurrence of local
and global contrast adaptation likely depends on cell type.

A different example of spatially structured adaptation has been found in the context of contrast
sensitization [52,86,87], which describes the transient sensitivity increase after exposure
to high contrast (as opposed to the more classical adaptive sensitivity decrease). For some
sensitizing ganglion cells, the occurrence of either sensitization or classical adaptation
depends on stimulus location. Stimuli near the midpoint of the receptive-field center cause
adaptation and more peripheral stimuli elicit sensitization, which is thought to result from adap-
tation in excitatory as well as inhibitory subunits within the receptive-field center [88].

Concluding remarks
Retinal function goes well beyond stimulus filtering by the center-surround receptive fields of
ganglion cells. Nonlinear stimulus integrationwithin the receptive field, local signal gating by inhibitory
interactions, and local adaptation endow the receptive field with a substructure that shapes visual
stimulus encoding. The receptive-field substructure also provides the substrate for different specific
computations in the retina, which rely on local analyses of light patterns. Thus, investigating the
substructure of ganglion cell receptive fields is important for capturing how the retina encodes
natural stimuli and for understanding the circuit implementation of specific retinal functions.

Reliable inference of ganglion cell subunits may prove a valuable tool for circuit analyses in the
retina. It provides indirect access to the properties of retinal bipolar cells, supplying information
about their receptive-field attributes and nonlinear transformations as well as about their func-
tional connectivity to ganglion cells. For example, obtaining the same subunit contour from two
or more ganglion cells indicates shared input from the same bipolar cells [68]. Furthermore, iden-
tified subunit layouts will be useful in experiments to optimally place probe stimuli to further study
the nonlinearities and dynamics of stimulus encoding and in computational analyses to construct
and constrain encoding models.

As methods for analyzing receptive-field substructure mature, it will be interesting to compare
their applicability to retinas from different animal models and to evaluate whether they reveal
differences in retinal circuit organization. Given that many aspects of the basic retinal layout are
similar across vertebrates, one should expect that the general methodology discussed here is
not restricted to particular species. For example, nonlinear spatial integration is a general obser-
vation, and evidence that receptive-field subunits correspond to bipolar cells has also come from
various vertebrates, including guinea pig [21], salamander [68], mouse [23], and macaque [56].
Nonetheless, details differ. For example, in the primate retina, the fovea is a region of specialized
connectivity and signal processing characteristics [89,90]. Beyond the fovea, nonlinear spatial
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integration appears to be the norm in the salamander retina [91], whereas cell types with more
linear characteristics can be found in mammalian retinas, as shown in cat [16], mouse [17], and
macaque [20,92]. Similarly, the spatial scope of contrast adaptation displays greater diversity in
mouse [85] than in salamander [83]. Furthermore, it seems likely that the basic scaffolding of
bipolar-cell subunits supports different species-specific functions through different nonlinear
transformations and inhibitory interactions.

Moreover, questions of receptive-field substructure also pertain to other visual areas or sensory
systems. For example, subunit models have been applied successfully to primary visual cortex
[93–95] and to motion-processing areas of the primate visual pathway [96,97]. In the auditory sys-
tem, complex dependencies of neural responses on the spectrotemporal structure of acoustic
stimuli have led to related models with nonlinear substructure in the spectrotemporal receptive
fields of the neurons [98–100]. Subunit identification here might be a promising endeavor to relate
this substructure to neural circuitry.

Despite the recent advances discussed here, the challenge of inferring receptive-field substruc-
ture in the retina is still far from solved (see Outstanding questions). Future developments may
profit from the conceptual overlap that exists with current efforts to analyze large neural ensem-
bles. Finding structure in high-dimensional population activity mirrors finding structure in spike-
generating visual stimuli. Thus, similar methods for identifying a manageable number of latent
variables may apply, such as dimensionality-reduction techniques [63,101]. For example, matrix
factorization approaches are used equivalently for both types of problem [68,96,102–104].

In addition, the rapid developments in machine learning and artificial neural networks promise
new approaches to study neural signal processing [105,106]. An enticing question here is how
these approaches can be harnessed to go beyond subunits of ganglion cells and study inhibitory
interactions in the retina. This could help tackle one of the biggest remaining mysteries about
the retina, namely the functions and interactions of the vast set of inhibitory amacrine cells
[2,107]. Incorporating such complexity into generic ganglion cell models, amenable for data-
driven parameter optimization, will be a considerable challenge. However, recent computational
advances may help deal with the resulting model intricacies.

Incorporating large populations of recorded ganglion cells into a single model with shared presyn-
aptic circuitry, for example, will help constrain parameter estimation [61,108]. Further constraints
can come from detailed anatomical knowledge, such as the morphology of individual cells [23] or
the statistics of neuronal connectivity [109–111]. Derived neural network models can then
be used for in silico analyses, for example, by extracting maximally effective stimuli [112] or by
generating mechanistic hypotheses for specific computations through model reduction tech-
niques [62]. For models of arbitrary structure, combining model simulations with machine-learning
algorithms can help with parameter optimization [113]. These and other ongoing developments
of computational approaches to infer structural and functional components of neural networks
promise new insights into the nonlinear and dynamic substructure of retinal receptive fields.
Figure 6. Measurements of local and global contrast adaptation. Shown are the temporal stimulus filters of a locally
adaptive and a globally adaptive ganglion cell, recorded in mouse retina under local switches in temporal contrast. The
stimulus comprised locations X and Y, each stimulated homogeneously and independently by binary white noise (top:
sample stimulus frame, yellow ellipse sketches an exemplary 3-sigma receptive-field contour of a ganglion cell). At
locations Y, contrast remained constant, whereas at locations X, contrast changed every 40 s between a low (low-low
condition) and a high (high-low condition) value. For the sample cell with local adaptation, the temporal filter for locations X
changed with the contrast at X (left), but the filter for Y remained unaffected (right). By contrast, for the sample cell with
global adaptation, the filters for both sets of locations displayed similar adaptive changes. Adapted from [85].
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