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Neuronal temporal filters as normal mode extractors
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To generate actions in the face of physiological delays, the brain must predict the future. Here we explore
how prediction may lie at the core of brain function by considering a neuron predicting the future of a scalar
time series input. Assuming that the dynamics of the lag vector (a vector composed of several consecutive
elements of the time series) are locally linear, normal mode decomposition decomposes the dynamics into
independently evolving (eigen)modes allowing for straightforward prediction. We propose that a neuron learns
the top mode and projects its input onto the associated subspace. Under this interpretation, the temporal filter of a
neuron corresponds to the left eigenvector of a generalized eigenvalue problem. We mathematically analyze the
operation of such an algorithm on noisy observations of synthetic data generated by a linear system. Interestingly,
the shape of the temporal filter varies with the signal-to-noise ratio (SNR): a noisy input yields a monophasic
filter and a growing SNR leads to multiphasic filters with progressively greater number of phases. Such variation
in the temporal filter with input SNR resembles that observed experimentally in biological neurons.
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I. INTRODUCTION

The brain must generate behavior in the face of physio-
logical delays on multiple levels: from sensory transduction
to axonal conduction to synaptic transmission and muscle
activation. To compensate for such delays, it would be useful
even for individual neurons to predict future inputs. Not sur-
prisingly, the paradigm of optimal prediction has been used
to derive normative models of neurons. Such models can be
loosely classified into two categories [1,2]: predictive coding
[3–6] and predictive information [7,8].

In predictive coding, a neuron computes an optimal pre-
diction of the signal and subtracts it from the actual value,
transmitting prediction error downstream [3–5]. This results
in an optimal linear filter whose shape depends on the statis-
tics of the input. Predictive coding approximately accounts
for the change in the temporal receptive field with the input
SNR [Fig. 1(a)] but fails to reproduce the exact shape of the
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filter because it has a narrow unitary peak at the exact time of
the actual signal (usually present time) [3]. Such peak can be
smoothed by adding a denoising objective but that introduces
additional parameters to the model.

In predictive information, a neuron filters the past signal
to preserve only the part that is most informative about the
future [2,7,8]. Such framework expands the assortment of
temporal filters depending on the various parameters such as
the balance between the past/output and output/future mutual
information. Recently, it was shown that multiphasic filter can
be derived using this formalism as well [9].

A shortcoming of both approaches is that they require set-
ting the time point relative to the present for which the neuron
generates prediction. Such formulation of the prediction prob-
lem does not seem suitable when neurons might have different
amounts of delay, or the goal is to predict (and act upon) a
trend or a mode of the signal that spans multiple time points
in the future. Moreover, both approaches view the neuronal
filter as a tradeoff between different mathematical terms in
the optimization objective and therefore depend on the relative
weighting of these terms. Therefore, the shape of the temporal
kernel depends on these, as well as other, hyperparameters of
the model.

An alternative approach to prediction assumes that the
sensory stimuli are generated by a (generally nonlinear) dy-
namical system. If such dynamics can be learned by the
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FIG. 1. Neuronal temporal filters. (a), (b) Experimentally ob-
tained by spike-triggered average (STA) from two retinal ganglion
cells stimulated by white noise of different contrast. (c) Top left
eigenvectors obtained in our framework for different levels of noise
in a synthetic example. Shading shows standard deviation. Whereas
theoretical filters peak when the neuron spikes, experimental ones
peak before that. This artifact is due to signal processing delays from
photoabsorption to the ganglion cell firing and the smoothness of
experimental filters resulting from the low-pass nature of biophysical
processes.

brain from previously seen trajectories, then prediction can
be cast as identifying long-living (growing or slow) modes
(or manifolds) in the input and extrapolating them into the fu-
ture. To take the first step in this direction, we take advantage
of the fact that in the vicinity of a hyperbolic fixed point the

invariant manifolds can be well approximated by the invariant
subspaces of the linearized dynamics (see e.g., Sec. 19.12a
of Ref. [10]). Therefore, a neuron that identifies the least
decaying linear mode can identify an invariant manifold of
a fixed point and generate a nontrivial prediction.

Here, we explore the hypothesis that a neuron extracts the
least decaying mode from the incoming scalar time series as
in normal mode decomposition [11]. To cast this problem in
the language of dynamics, we construct time-lag vectors by
windowing the scalar time series. We assume that the system
is in the vicinity of a hyperbolic fixed point and identify the
linear dynamics of the lag vectors. The eigendecomposition of
the linear transition matrix yields the eigenmodes that evolve
independently as the right eigenvectors and the corresponding
linear filters as the left eigenvectors. Therefore, the top left
eigenvector yields a linear filter that projects onto the most
dominant mode, representing neuronal output. Thus, unlike
the previous predictive coding and predictive information ap-
proaches, which optimize prediction for a certain time in the
future, in our proposal, a neuron learns a rank-one approx-
imation of the dynamical system generating the input and
outputs the top mode, which develops into the future in a
predictable way.

Our theoretical proposal makes a prediction that can be
compared with experimental data. We find that the shape of
the top left eigenvector depends on the input SNR: monopha-
sic filter at low SNR with adding phases for growing SNR
[Fig. 1(c)]. This prediction is reminiscent of the SNR-induced
variation in the form of the spike-triggered average (STA)
of various types of biological neurons [Figs. 1(a) and 1(b)]
[3,12–16]. Although this does not prove our proposal it sug-
gests that this approach may be a step in the right direction.

II. NORMAL MODE DECOMPOSITION (NMD)

In this section, we review NMD [11] in the context of a
neuron with a single input and a single output (SISO).1

A. Problem statement and linearization

Let {x(t )}t=1,2,... be a scalar time series satisfying the non-
linear relation

x(t + 1) = f (x(t ), . . . , x(t − n)), t � n + 1, (1)

where f : Rn → R is a continuously differentiable function
and n � 1 is referred to as the lag. We say x∗ ∈ R is a fixed
point if x∗ = f (x∗, . . . , x∗). We embed a scalar time series
x(t ), t = 1, . . . , T + n, into a sequence of lag vectors xt =
[x(t − n + 1), . . . , x(t )]� ∈ Rn. The dynamics of the first n −
1 components of the lag vector is given by a simple shift in
the time step [i.e., x(t − i) → x(t − i + 1)] and the dynamics
of the final component x(t ) is given by Eq. (1) [i.e., x(t ) →
f (x(t ), . . . , x(t − n))]. These can be summarized as xt+1 =

1In a neuron receiving synapses from multiple sources this would
correspond to considering the total synaptic current as a scalar input.
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F(xt ), where the function F is given by

F(xt ) = F

⎛
⎜⎜⎝

⎡
⎢⎢⎣

x(t − n + 1)
...

x(t − 1)
x(t )

⎤
⎥⎥⎦

⎞
⎟⎟⎠ ≡

⎡
⎢⎢⎣

x(t − n + 2)
...

x(t )
f (x(t ), . . . , x(t − n))

⎤
⎥⎥⎦.

(2)

We assume that the dynamics are dominated by the presence
of a hyperbolic fixed point at x∗. We approximate dynamics
(2) by expanding around this fixed point. Defining δxt = xt −
x∗, we have:

xt+1 = F(x∗) + ∇F(x∗)δxt + o(‖δxt‖)

≈ x∗ + ∇F(x∗)δxt ,

where we have used the fact that F(x∗) = x∗ and ∇F(x∗) is
the Jacobian evaluated at x∗. After subtracting x∗ from both
sides:

δxt+1 ≈ ∇F(x∗)δxt .

Letting A := ∇F(x∗) and assuming without loss of generality
that x∗ = 0, we have the following linear approximation to the
nonlinear dynamics in Eq. (2) near the fixed point:

xt+1 = Axt . (3)

From the definition of the function F in Eq. (2), we see that
A = ∇F(0) takes a companion matrix form [17]

A =

⎡
⎢⎢⎢⎢⎣

0 1
0 1

. . .
. . .

0 1
c1 c2 . . . cn

⎤
⎥⎥⎥⎥⎦

, (4)

where ci = ∂ f (x∗)/∂xi.

B. Eigendecomposition of the dynamics

The matrix A ∈ Rn×n is generically a non-normal matrix
possessing an eigendecomposition:

A =
∑

i

λiwiv�
i s.t. v�

i w j = δi j, (5)

where λi are the eigenvalues and wi (v�
i ) are the right (left)

eigenvectors. Here, we consider matrix A describing a hy-
perbolic fixed point (λi 	= 1). Moreover, we assume that all
eigenvalues are real and are sorted in descending order λi �
λi+1. We also assume that the top mode is nondegenerate (i.e.,
λ1 > λ2).

The normal modes are found by eigendecomposition of A.
As a matrix of companion form, A is diagonalized using the
Vandermonde matrix and its inverse [17]:

A = V�V−1,

where V is the Vandermonde matrix

V :=

⎡
⎢⎢⎢⎣

1 1 · · · 1
λ1 λ2 · · · λn
...

...
...

λn−1
1 λn−1

2 · · · λn−1
n

⎤
⎥⎥⎥⎦

and � := diag(λ1, . . . , λn) is the diagonal matrix of eigenval-
ues λi, which are the roots of the characteristic polynomial
with coefficients ci. The left eigenvectors of A, are given by
the rows of the inverse of the Vandermonde matrix V−1. It is
easily verified that the right eigenvectors of A, corresponding
to the columns of the Vandermonde matrix, represent the
individual modes of the dynamical system.

C. Projecting onto the dominant mode

We are interested in finding the dominant exponential
mode of the dynamics. As stated above, the dominant expo-
nential mode is represented as the top right eigenvector of A.
Therefore, by projecting onto the top right eigenvector, we can
isolate the dominant mode.

Because of the biorthogonality of the left and the right
eigenvectors, the top left eigenvector (henceforth referred to
as v1) is orthogonal to all but the top right eigenvector. This
allows us to use v1 as a projector that zeros out all but the
most dominant mode of the dynamics. We therefore propose
that it is the neuron’s goal to learn the top left eigenvector and
project its input onto this vector.

In order to learn the top left eigenvector, one approach
would be to first find matrix A and then perform the eigen-
decomposition on the inferred A matrix. This matrix can be
found from data x(t ) by minimizing the mean-squared error:

min
A

∑
t

‖xt+1 − Axt‖2. (6)

Equation (6) can be solved via the following system of
equations:

X+X� = AXX�, (7)

where we introduce a matrix notation X = [xn, . . . , xT +n−1]
and X+ = [xn+1, . . . , xT +n].

In this paper, however, instead of directly solving for A
via Eqs. (6) and (7), we substitute the eigendecomposition,
Eq. (5) and multiply both sides by v�

i on the left, leading to
the equivalent generalized eigenvalue problem:

v�
i X+X� = λiv�

i XX�. (8)

This allows us to circumvent the intermediate step of comput-
ing the A matrix explicitly.

III. DETECTING THE DOMINANT MODE

In this section, we apply our formalism to time series
synthetically generated by a linear dynamical system of
order k.

A. Problem formulation

As stated in Sec. I, we assume that we are in the vicinity
of a hyperbolic fixed point of the dynamics of the lag vector.
This means that the dynamics of the linearized system can be
decomposed as the sum of k exponentials with real exponents
determined by the Jacobian of f at the fixed point and coeffi-
cients determined by the initial conditions of the system. We
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(a) (b) (c) (d)

FIG. 2. Problem formulation. (a) We generate a number of trajectories in the vicinity of a hyperbolic fixed point. Each trajectory is
comprised of a number of growing and decaying exponentials and white noise [see (c)]. (b) From these trajectories, we learn the top left
eigenvector of the inferred A matrix. We use this as the time kernel of our proposed neuron. (c) We apply the time kernel to a previously
unseen trajectory from the same dynamical system. (d) We extract the most dominant mode by convolving the time series with the computed
time kernel. In this example, the presence of the dominant mode is clear from the projection starting at t = 1. However, if we only look at the
time series in (c), the presence of a growing mode would not be clear until around time t = 2. Dynamics details: The time series is comprised
of five different exponents with exponents given by {−1.5, −1, 0, 1, 1.5}. The time series is discretized with time step 0.05.

also assume that an uncorrelated observation noise (see Fig. 2)

x(t ) =
k∑
i

cie
ait + η(t ). (9)

In general, NMD extracts the exponents via an eigendecompo-
sition, i.e., the eigenvalues of A, λi = eai . Since a neuron has
a single output it can extract only one constituent. Because
the greatest contribution to the future is given by the largest
exponent (Fig. 2) we propose that a neuron learns the top
left eigenvector of A and projects its lag vector, xt , onto
this eigenvector, which can then be used for prediction and
control.

B. Dependence of the filter on the noise level

In this section, we look at the effect of noise on the shape of
the time kernel. We first discuss the effect of additive Gaussian
noise analytically, we then verify this numerically on synthet-
ically generated data. Previous work analyzing the application
of NMD to data with observation noise have primarily focused
on extracting the true eigenvalues and eigenvectors of the
system, that is the dynamic modes of the dynamical system
in the absence of noise [18,19]. Here, we are interested in
extracting the most dominant mode from noisy data, and as
we will see (Fig. 5), the eigenvector of the noiseless system is
not a good candidate for this task.

a. Analytical calculation. Let us assume that the time se-
ries given in Eq. (9) has additive white observation noise,
that is, we assume that X satisfies Eq. (3) but we observe
Xε = X + η with η ∼ N (0, ε2). We denote the noiseless data
and ground truth dynamics by X and A, and call the data and
the inferred dynamics in the presence of noise Xε and Aε .
When averaging over the different draws of the noise, we have
Eη(XεX�

ε ) = XX� + ε2Ik and Eη(Xε+X�
ε ) = X+X� + ε2S,

where Ik is the identity matrix and S is the matrix of off-
diagonal ones:

S =

⎡
⎢⎢⎢⎢⎣

0 1
0 1

. . .
. . .

0 1
0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

.

Note that here Eη denotes averaging only over the noise draws
and the averaging over the samples is performed in the product
of data matrices X+X� and X+X�. The putative Aε matrix
(that is the A matrix that minimizes the MSE objective with
noisy data Xε) is now given by

Aε = (Xε+X�
ε )(XεX�

ε )−1

= (AXX� + ε2S)(XX� + ε2Ik )−1. (10)

That is, given the ground truth dynamics and noiseless data
covariances (i.e., A and XX�), we can determine the inferred
dynamics and eigenvectors in the presence of white noise. We
provide further details of this computation in Appendix A.
While the eigenvalue equations are derived analytically, they
are not solvable in closed form and we look at their numerical
solutions for varying noise and exponents. Here, we summa-
rize the results and provide some intuition.

When looking at the eigenvalues of Aε (Fig. 3), we see that
as the noise level ε increases, the real parts slowly decrease
and eventually cross zero. At the same time, the imaginary
parts of the eigenvalues start at zero and grow when the
real part becomes negative. This is intuitively understandable:
when the increased amount of noise reduces the ability of
the system to differentiate different modes, it starts replacing
these with complex oscillatory modes.

Furthermore, at the noise value for which a mode’s eigen-
value’s real part crosses zero, we see that the top left
eigenvector’s number of phases decreases by one. This is due
to the fact that the multiphasic structure of the left eigen-
vectors are responsible for the biorthogonal structure of the
left/right eigenvectors.

b. Numerical verification. Above we looked at the eigen-
vectors of Aε , i.e., after averaging over different noise draws.
Here, we look at these for specific noise draws, that is, for
specific simulations of linear dynamical systems. We looked
at the response of the algorithm to synthetic data constructed
from dynamics in the vicinity of a hyperbolic fixed point.
We initiated a number of trajectories with different initial
conditions and noise draws. Our algorithm finds the top eigen-
vector on the dynamics inferred from these trajectories. We
then applied the learned eigenvector to a previously unseen
trajectory. Figure 2 (right) shows the projection of this time
series onto the largest left eigenvector and we see that we
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FIG. 3. Analytically derived eigenvectors and eigenvalues for the lag n = 5 for different noise levels. The x axis for the eigenvalue plots
denotes the eigenvalues sorted from largest to smallest real part. System with exponents {0.7, 0.2, −0.1, −0.4, −1.6} and time step equal to 1
for simplicity.

correctly recover the dominant exponential. For details of this
experiment and further results and figures see Appendix A.

Figure 4 shows the effect of various parameters such as the
noise, the system order, and the lag vector length on the shape
of the filter. We see that adding noise decreases the number of
the phases as expected [Fig. 4(a)]. Similarly as we decrease
the system order k, the number of phases decrease [Fig. 4(b)]
as expected from the biorthogonality argument given at the
end of Sec. II. Figure 4(c) shows that with a finite amount of
noise, as the length of the lag vector is increased, the number
of phases can slowly increase. This is due to the fact that with
longer lag vectors, there is higher noise tolerance. Indeed as
we take the noise values to zero, we see that the lag vector
length no longer affects the number of phases in the filter.
Increasing the length of the lag vector merely stretches the
filter shape (Fig. 6 in Appendix B).

C. Comparison with optimal projection
under noisy observations

To verify that in the presence of noise our algorithm pro-
vides a sensible approximation of the dominant dynamical
mode, in this section we discuss a noise-optimal projection
alternative and provide empirical comparisons.

Let xt be a time series and suppose our goal is to extract
the dominant exponential mode by projecting xt onto the filter
given by v [derived as the top eigenvector of (8) when there
is no observation noise]. We refer to v as the noiseless filter.

Suppose, however, we do not have access to xt , but only a
noisy observation yt = xt + nt , where nt is isotropic Gaussian
noise with variance α2. What is the optimal projection of yt ?
Consider the optimization problem

min
w

E [|w�yt − v�xt |2]

= min
w

(w − v)�Cxx(w − v) + α2w�w,

where we have used the fact that nt is mean zero isotropic
noise independent of xt . Solving for the optimal w we find

w = (Cxx + α2I)−1Cxxv. (11)

In order to apply this method, we need to know the noise
variance α and also the noise-free projector v and covariance
Cxx. Computing these noise-free quantities is challenging, es-
pecially in a problem where the dynamics might be changing
over time. Furthermore, computing the full covariance ma-
trix Cxx requires more samples than just computing the top
subspace in our generalized eigenvalue problem [Eq. (8)]. In
practice, we find that even if we know α and v, our method
gives comparable performance to this noise-optimal solution
(Fig. 5). Furthermore, our method provides a better estimate
of the most dominant mode than the nonadaptive method
which uses the true (i.e., noiseless) eigenvector. In practice,
in order to compute the noiseless filter v, we set the noise
variance α = 10−6.

(a) (b) (c)

FIG. 4. Dependence of the filter shape for the rank-five system in Fig. 2 on system parameters: (a) noise amplitude, (b) system order (the
number of exponential constituents, k), and (c) length of the lag vector, n. In (b) and (c) the noise is fixed at 0.01%. In (b), to achieve a
comparable system of lower rank k, we keep the top k exponents of the system.
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FIG. 5. Comparison of the performance with respect to the
mean-square error between the recovered dominant exponential and
the ground truth. The noise-optimal solution is given by the filter in
Eq. (11) and noiseless filter refers to using the filter computed in the
absence of noise but applied to noisy observations. The system is the
same as in Fig. 2.

IV. DISCUSSION

We propose to model a neuron on an algorithmic level as
performing a NMD on its input. Specifically, the temporal
filter of a neuron is given by the top left eigenvector of the
generalized eigenproblem formulated in terms of covariances
of lag vectors. The neuron outputs the fastest growing mode
present in the input thus predicting a future trend.

How could a biological neuron find the top eigenvector
of the generative matrix? One possibility is for a neuron
to solve the generalized eigenproblem (8) using a power
iteration. Specifically, this would require two types of history-
dependent active conductances (ion channels), which encode
input covariances, X+X� and XX�, with opposite signs (de-
polarizing and hyperpolarizing). Then the solution of (8)
would be given by the voltage that balances the two currents.
The output of a neuron would reflect such voltage, thus pro-
jecting the input on the top left eigenvector of the transition
matrix.

Whereas a single neuron computing a scalar signal can
represent only one eigenmode, multiple neurons may extract
multiple modes (not just the top eigenmode). For each neuron
to represent a different mode their output must be decorre-

FIG. 6. The dependence of the filter shape vs the length of the
lag vector at low noise values (0.00001%).

lated, for example, by the lateral inhibitory connections. The
strengths of such connections can be adjusted using biolog-
ically plausible local learning rules as has been shown by
some of the authors previously in the context of extracting
eigenmodes of the multichannel covariance [20–22]. Also,
we proposed a framework for deriving multichannel neu-
ral networks for solving symmetric generalized eigenvalue
problems [23] and the approach can potentially be extended
to solve nonsymmetric generalized eigenvalue problems. We
anticipate that a similar approach can be applied to extracting
eigenmodes of the time-lagged dynamics using local learning
rules.

Because the matrix A in Eq. (3) is generically non-normal,
its eigenvectors are not guaranteed to be orthogonal. In prac-
tice, this means that they are not robust to perturbations to the
elements of the matrix A. This requires particular care to en-
sure that the eigenvalues are sufficiently distinct as determined
by the pseudospectrum of A [24].

Neuronal projection of its input onto the subspace corre-
sponding to the fastest growing mode has an interpretation
in terms of the phase portrait of the generative dynamical
system. Close to a hyperbolic fixed point the dynamics are
linear and the fastest growing mode would correspond to the
unstable invariant subspace, which evolves into an attracting
manifold away from the fixed point. Therefore, the sign of the
projection onto the unstable subspace predicts along which
unstable manifold the future trajectory of the system will
develop beyond the linear regime. If the neuronal output is
rectified, it effectively assigns the trajectory to a particular
future state. Output of a layer of such rectifying neurons
becomes a latent vector variable that can in turn be an input
to the next layer. This opens a path to stacking the layers
of such neurons to discover more and more abstract latent
variables.

APPENDIX A: DETAILS OF ANALYTIC ARGUMENTS

Starting with Eq. (10) describing the effect of noise:

A = (X+X�)(XX�)−1 = (
A0X0X�

0 + ε2S
)(

X0X�
0 + ε2Ik

)−1
.

(A1)

we can derive the noisy version of the dynamics if we know
the covariance structure of the non-noisy data X0X�

0 . It is in-
tuitively understandable why this structure is necessary since
the effect of noise depends not just on the eigenvalues and
eigenvectors of A, it also depends on the magnitudes of each
individual mode. Specifically, if we assume the generative
model in Eq. (9), it is not just the ai that determine the noisy
dynamics, the ci are also important and this information is not
present in A but is available in X0X�

0 .
For plots given in Fig. 3, we computed the X0X�

0 using
time series of the form in Eq. (9). We take the length of the
time series to be just long enough to compute a full rank
covariance matrix.

APPENDIX B: OTHER FIGURES

Figure 6 shows the dependence of the filter shape as we
vary the lag vector length for a small amount of noise. We
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FIG. 7. We reproduce Fig. 2 with imaginary parts in the exponents. (a) Imaginary parts in all trajectories except the one with the largest
eigenvalue. (b) Imaginary parts in all trajectories including the one with the largest eigenvalue. (c) Imaginary parts in all trajectories including
the one with the largest eigenvalue, but lower noise level.

see that increasing the lag vector length no longer affects the
number of phases [cf. Fig. 4(c)].

APPENDIX C: INVERSE OF A VANDERMONDE MATRIX

Recall that in the noiseless case (i.e., ε = 0), the ma-
trix A has eigendecomposition A = V�V−1, where V is a
Vandermonde matrix. In this section we show that the top left
eigenvector of a Vandermonde matrix of rank n changes sign
n − 1 times. Consider the Vandermonde matrix

V :=

⎡
⎢⎢⎢⎣

1 1 · · · 1
λ1 λ2 · · · λn
...

...
...

λn−1
1 λn−1

2 · · · λn−1
n

⎤
⎥⎥⎥⎦

where λ1 > · · · > λn > 0. Rawashdeh [25] showed that the
inverse of the Vandermonde matrix V is given by

(V−1)i j = (−1)i+ jSn− j,i

∏n
k<l s.t.l,k 	= j (λk − λl )∏n

k<l (λk − λl )
,

where

S j,k :=
∑

1�i1<···<ik�n,i� 	= j

k∏
m=1

λim > 0.

Importantly, the sign of the (1, j)th entry is positive (negative)
if j is odd (even). Therefore, the top left eigenvector changes
sign n − 1 times.

APPENDIX D: IMAGINARY PARTS IN EIGENVALUES

In the main text we only examine a time series composed
of real exponents. Here we examine the case where exponents
have imaginary parts, which creates oscillatory behavior in the
training and test time series. We reproduce Fig. 2 where we
infer the A matrix from training trajectories, extract the top
left eigenvector, and use it to extract the dominant mode from
an unseen time series. In Fig. 7(a) we add an imaginary part in
all trajectories except the one with the largest eigenvalue. We
see that we are still able to accurately extract the largest mode
of the time series. In Fig. 7(b) we add an imaginary part in all
trajectories including the one with the largest eigenvalue. Here
we fail to accurately reconstruct the largest mode, although
we get the qualitative behavior correct. In Fig. 7(c) we repeat
the test in Fig. 7(b) but in addition we lower the noise level.
Under these circumstances we see that we are able to accu-
rately reconstruct the largest mode, even when it contains an
imaginary part. The specific parameters are given in Table I.

TABLE I. Experimental parameters for Fig. 7.

Row Exponent Imaginary Part noise

(a) {−5 + 0.2i, −1.5 + 7i, 1i, 1.5 + 0.1i, 5.001} 0.05
(b) {−5 + 0.4i, −1.5 + 0.2i, 0.5i, 1.5 + 0.5i, 5.001 + 6i} 0.05
(c) {−5 + 0.4i, −1.5 + 0.2i, 0.5i, 1.5 + 0.5i, 5.001 + 6i} 0.0001

013111-7



SIAVASH GOLKAR et al. PHYSICAL REVIEW RESEARCH 6, 013111 (2024)

[1] Y. Singer, Y. Teramoto, B. D. B. Willmore, J. W. H. Schnupp,
A. J. King, and N. S. Harper, Sensory cortex is optimized for
prediction of future input, eLife 7, e31557 (2018).

[2] M. Chalk, O. Marre, and G. Tkavcik, Toward a unified theory
of efficient, predictive, and sparse coding, Proc. Natl. Acad. Sci.
115, 186 (2018).

[3] M. V. Srinivasan, S. B. Laughlin, and A. Dubs, Predictive
coding: A fresh view of inhibition in the retina, Proc. R. Soc.
London B 216, 427 (1982).

[4] R. P. N. Rao and D. H. Ballard, Predictive coding in the vi-
sual cortex: A functional interpretation of some extra-classical
receptive-field effects, Nature Neurosci. 2, 79 (1999).

[5] Y. Huang and R. P. N. Rao, Predictive coding, WIRES Cogn.
Sci. 2, 580 (2011).

[6] K. Gregor and D. Chklovskii, A lattice filter model of the visual
pathway, Adv. Neural Info. Proc. Syst. 25 (2012).

[7] N. Tishby, F. C. Pereira, and W. Bialek, The information Bottle-
neck method, in Proceedings of the 37th Allerton Conference on
Communication, Control, & Computing (University of Illinois,
1999).

[8] W. Bialek, R. R. De Ruyter Van Steveninck, and N. Tishby,
Efficient representation as a design principle for neural coding
and computation, in 2006 IEEE International Symposium on
Information Theory (IEEE, New York, 2006), pp. 659–663.

[9] N. Y. Jun, G. D. Field, and J. M. Pearson, Efficient coding,
channel capacity and the emergence of retinal mosaics, Adv.
Neural Info. Proc. Syst. 35, 33211 (2022).

[10] S. Wiggins, Introduction to Applied Nonlinear Dynamical Sys-
tems and Chaos, Texts in Applied Mathematics (Springer,
New York, 2006).

[11] L. D. Landau and E. M. Lifshitz, Mechanics, 3rd ed.,
Course of Theoretical Physics (Butterworth-Heinemann,
London, 1976), Vol. 1.

[12] S. A. Baccus and M. Meister, Fast and slow contrast adaptation
in retinal circuitry, Neuron 36, 909 (2002).

[13] J. K. Liu and T. Gollisch, Spike-triggered covariance
analysis reveals phenomenological diversity of contrast

adaptation in the retina, PLoS Comput. Biol. 11, e1004425
(2015).

[14] D. Chander and E. J. Chichilnisky, Adaptation to temporal
contrast in primate and salamander retina, J. Neurosci. 21, 9904
(2001).

[15] K. J. Kim and F. Rieke, Temporal contrast adaptation in the
input and output signals of salamander retinal ganglion cells,
J. Neurosci. 21, 287 (2001).

[16] Z. F. Mainen and T. J. Sejnowski, Reliability of spike timing in
neocortical neurons, Science 268, 1503 (1995).

[17] R. Bellman, Introduction to Matrix Analysis (SIAM,
Philadelphia, 1997).

[18] S. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley,
Characterizing and correcting for the effect of sensor noise in
the dynamic mode decomposition, Exp. Fluids 57, 42 (2016).

[19] Y. Ohmichi, Y. Sugioka, and K. Nakakita, Stable dynamic
mode decomposition algorithm for noisy pressure-sensitive-
paint measurement data, AIAA J. 60, 1965 (2022).

[20] C. Pehlevan, T. Hu, and D. B. Chklovskii, A hebbian/anti-
hebbian neural network for linear subspace learning: A
derivation from multidimensional scaling of streaming data,
Neural Comput. 27, 1461 (2015).

[21] C. Pehlevan, A. M. Sengupta, and D. B. Chklovskii, Why do
similarity matching objectives lead to hebbian/anti-hebbian net-
works? Neural Comput. 30, 84 (2018).

[22] C. Pehlevan and D. B. Chklovskii, Neuroscience-inspired
online unsupervised learning algorithms: Artificial neural net-
works, IEEE Signal Proc. Mag. 36, 88 (2019).

[23] D. Lipshutz, Y. Bahroun, S. Golkar, A. M. Sengupta, and D. B.
Chklovskii, Normative framework for deriving neural networks
with multicompartmental neurons and non-hebbian plasticity,
PRX Life 1, 013008 (2023).

[24] L. N. Trefethen and M. Embree, Spectra and Pseudospectra:
The Behavior of Nonnormal Matrices and Operators (Princeton
University Press, Princeton, 2020).

[25] E. A. Rawashdeh, A simple method for finding the inverse ma-
trix of Vandermonde matrix, Matematicki Vesnik 3, 207 (2019).

013111-8

https://doi.org/10.7554/eLife.31557
https://doi.org/10.1073/pnas.1711114115
https://doi.org/10.1098/rspb.1982.0085
https://doi.org/10.1038/4580
https://doi.org/10.1002/wcs.142
https://papers.nips.cc/paper_files/paper/2012/file/31839b036f63806cba3f47b93af8ccb5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/d0866def6f52ebe8b8e32130a4d2c963-Paper-Conference.pdf
https://doi.org/10.1016/S0896-6273(02)01050-4
https://doi.org/10.1371/journal.pcbi.1004425
https://doi.org/10.1523/JNEUROSCI.21-24-09904.2001
https://doi.org/10.1523/JNEUROSCI.21-01-00287.2001
https://doi.org/10.1126/science.7770778
https://doi.org/10.1007/s00348-016-2127-7
https://doi.org/10.2514/1.J061086
https://doi.org/10.1162/NECO_a_00745
https://doi.org/10.1162/neco_a_01018
https://doi.org/10.1109/MSP.2019.2933846
https://doi.org/10.1103/PRXLife.1.013008
http://www.vesnik.math.rs/vol/mv19303.pdf

