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Abstract

Spatially nonlinear stimulus integration by retinal ganglion cells lies at the heart of various

computations performed by the retina. It arises from the nonlinear transmission of signals

that ganglion cells receive from bipolar cells, which thereby constitute functional subunits

within a ganglion cell’s receptive field. Inferring these subunits from recorded ganglion cell

activity promises a new avenue for studying the functional architecture of the retina. This

calls for efficient methods, which leave sufficient experimental time to leverage the acquired

knowledge for further investigating identified subunits. Here, we combine concepts from

super-resolution microscopy and computed tomography and introduce super-resolved

tomographic reconstruction (STR) as a technique to efficiently stimulate and locate recep-

tive field subunits. Simulations demonstrate that this approach can reliably identify subunits

across a wide range of model variations, and application in recordings of primate parasol

ganglion cells validates the experimental feasibility. STR can potentially reveal comprehen-

sive subunit layouts within only a few tens of minutes of recording time, making it ideal for

online analysis and closed-loop investigations of receptive field substructure in retina

recordings.

Author summary

Neural computations in sensory systems often involve nonlinear pooling of sensory infor-

mation. In the vertebrate retina, nonlinear signal transmission between bipolar cells and

downstream ganglion cells, the output neurons of the retina, shapes the ganglion cells’

functional properties and structures a ganglion cell’s receptive field into smaller subunits.
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Citation: Krüppel S, Khani MH, Schreyer HM,

Sridhar S, Ramakrishna V, Zapp SJ, et al. (2024)

Applying Super-Resolution and Tomography

Concepts to Identify Receptive Field Subunits in the

Retina. PLoS Comput Biol 20(9): e1012370.

https://doi.org/10.1371/journal.pcbi.1012370

Editor: Lyle J. Graham, Centre National de la

Recherche Scientifique, FRANCE

Received: December 1, 2023

Accepted: July 28, 2024

Published: September 3, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1012370
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Methods for identifying these subunits from recordings of ganglion cell activity are

needed to better understand the signal flow and the computations occurring between

bipolar and ganglion cells. We here show that concepts from super-resolution microscopy

and tomography can be used to design a visual stimulus and corresponding analysis to

efficiently trigger ganglion cell activity while maintaining high spatial resolution for

revealing subunits. As demonstrated by computer simulations and recordings from the

primate retina, the method can identify subunit layouts with little experimental recording

time, providing for the possibility to be combined with in-depth functional analyses or

applied in closed-loop experiments.

Introduction

Retinal ganglion cells, the output neurons of the retina, are classically modelled with a linear-

nonlinear (LN) model [1]. This can take the center-surround structure of their receptive fields

into account, but indiscriminately considers luminance signals inside the receptive field to be

integrated linearly and passed through a nonlinearity only afterwards, at the model’s output

stage. While the LN model is still popular due to its simplicity, it has long been known that

many ganglion cells respond strongly to spatially structured stimuli, even when there is no

net-change in the average illumination of the receptive field [2–6]–a characteristic the LN

model cannot replicate. This spatial nonlinearity is mediated via functional subunits in the

receptive fields of retinal ganglion cells. These enable various specific computations that would

be impossible without them, from sensitivity to fine spatial structures to various types of

motion and pattern sensitivity [7–13]. Moreover, nonlinear spatial integration also plays a

major role in shaping ganglion cell responses to natural stimuli [14–16]. The biological corre-

late of receptive field subunits are the retina’s bipolar cells, which have been found to rectify

their excitatory inputs to ganglion cells [6,17,18].

Given the importance of spatially nonlinear processing in the retina, understanding the

underlying circuits is highly desirable. For retinal ganglion cells, extracellular recordings with

multielectrode arrays [19] allow large-scale functional characterizations that can capture the

diversity of cell types [20–23]. For bipolar cells, progress has been made on large-scale record-

ings using glutamate imaging [24,25], but it is difficult to combine these techniques to obtain

information about the connectivity between large populations of bipolar and ganglion cells. As

an alternative, several approaches have been developed to infer subunits and thus connected

bipolar cells from ganglion cell recordings alone [26–31]. However, these approaches are often

based on ganglion cell responses to fine spatiotemporal white noise stimuli, which generally

evoke comparatively weak responses, making long recordings necessary. Limited recording

time may thus obstruct reliable subunit identification or curtail the functional investigations of

subunit layouts.

To address this issue, we introduce a novel method to identify the layout of subunits com-

posing a ganglion cell’s receptive field that makes use of stimuli specifically targeted towards

the computational characteristics of subunits and that has the potential of considerably reduc-

ing the required recording time. The method combines the functional principles underlying

stimulated emission depletion (STED) microscopy [32,33] and tomographic imaging such as

computed tomography (CT) scans [34], and we accordingly term it super-resolved tomo-

graphic reconstruction (STR). In this manuscript, we investigate the potential of STR via com-

prehensive modelling and electrophysiological recordings from primate retinal ganglion cells.
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Results

Super-resolved tomographic reconstruction approach

Retinal ganglion cells often display spatially nonlinear integration of luminance signals [2].

Fig 1A and 1B exemplifies this with responses of an On parasol cell recorded in the isolated

marmoset retina. The cell responded strongly to increases of luminance during a full-field

stimulus, but not to decreases of luminance (Fig 1A). On the other hand, a stimulus that

involved reversals of a spatial pattern while keeping the mean luminance inside the receptive

field constant also led to substantial responses (Fig 1B). This nonlinear spatial integration of

luminance inside the receptive field of a ganglion cell is mediated via so-called subunits, which

are believed to tile the receptive field and to correspond to bipolar cells, the source of the excit-

atory input to ganglion cells [3,5,6,17,27].

To develop a method for identifying the layout of subunits by recording ganglion cell

responses to visual stimuli, we set up computational subunit models to simulate the response

to a flashed spatial pattern. For concreteness, we focused the models on On-type ganglion

cells. We modelled the nonlinear spatial integration by approximating both the subunits, i.e.,

bipolar cells, and the ganglion cell itself as separate LN integration stages, yielding an LNLN-

like model. The first stage consisted of a linear spatial integration at the level of the subunits,

which we portrayed as 2D Gaussian filters applied to the image’s Weber contrast values, fol-

lowed by a rectification. At the level of the ganglion cell, the subunit outputs were then

summed before a final transformation resulted in the model’s response, given as the average

spike count or firing rate elicited by the flashed spatial pattern.

A simple approach to probe the spatial sensitivity profile of a ganglion cell is to flash a small

spot of light (Fig 1C, left) at different locations across the cell’s receptive field. As illustrated for

a schematic model with four circular subunits (Fig 1C, center), the responses of the model

(Fig 1C, right) together map out its receptive field, which corresponds to the union of the sub-

units. Since the subunits have no gaps between each other and even overlap, individual sub-

units can usually not be identified by reproducing the receptive field.

To enable detection of the subunit structure inside a receptive field, our approach is to add

a suppressive dark ring, or annulus, around the excitatory spot, leading to a shape that is com-

monly known as a Mexican hat (Fig 1D, left). By applying this stimulus, we make use of the lin-

ear luminance integration within subunits and the nonlinear integration across subunits. For

instance, the average luminance of the hat is the same as the background gray (similar to the

example of Fig 1B), but the model still produces responses due to its spatially nonlinear com-

putation (Fig 1D, right). If the size of the hat is similar to the size of the subunits, an individual

subunit will only be activated by the stimulus if the hat is placed close to its center. In this case,

the suppressive ring of the stimulus plays a subordinate role for that subunit, due to the sub-

unit’s greater sensitivity closer to its center, which is a reasonable assumption even if the exact

Gaussian shape is a simplification. On the other hand, if the stimulus is placed at the overlap of

two or more subunits, each subunit will be triggered significantly less or not at all, because the

suppressive ring now strikes the more sensitive central parts of the subunits, while the excit-

atory white spot only hits the periphery of each of the subunits.

Comparing the response maps obtained with the simple homogeneous spot (Fig 1C) and

with the Mexican-hat shaped spot (Fig 1D), similar response strengths are obtained for spots

placed at the center of a subunit, because a suppressive ring does not decisively affect that sub-

unit and the suppression of neighboring subunits evoked by the ring is rectified anyway. By

contrast, for spots placed at the overlap of subunits, the suppressive ring diminishes responses,

as explained above, whereas a simple spot still leads to a strong response because the partially

activated subunits do not receive any suppression and combine their activation to accumulate
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Fig 1. Schematic of super-resolved tomographic reconstruction (STR) method. (A) Response of a sample On parasol retinal ganglion cell to light-intensity

steps without spatial structure. Top: Stimulus time course with the insets displaying a point-wise multiplication of the cell’s receptive field with the current

stimulus. Bottom: Peri-stimulus time histogram (PSTH) of the cell’s response. For visualization purposes, the PSTH is repeated once. (B) Same cell as in (A),

but for a grating stimulus with spatial structure. (C) Schematic depiction of using a spot stimulus (left) to probe the receptive field of a model On-type ganglion

cell (center). Orange arrows on top of stimulus signify the shifts of the stimulus for probing the receptive field. Black circles represent the 1.5 σ ellipses of the

subunits, red circle represents the 1.5 σ ellipse of the receptive field. Response of the model (right) shows which spot positions led to a strong response (black)

and which to a weak response (white). (D) Same as (C), but for a stimulus with an added dark ring around the white spot. (E) 1D probing of model responses

with a horizontal stripe (left) at different vertical positions in the receptive field of the same model. The response (right) depended on the vertical position of the

stripe. (F) Same as (E), but for a Ricker stripe, which has added dark sidebands adjacent to the white center stripe. (G) Sinograms of the responses of the model

to the plain stripes (left) and to the Ricker stripes (right) as measured from 36 stripe angles (steps of 5˚) and 60 stripe positions (steps of 2/3 pixels). Dark

shading denotes stronger responses. Black rectangles at 90˚ mark measurements shown in (E) and (F). Green line indicates sine trace of one subunit in the

model’s layout. (H) Reconstructions of the sinograms in (G) using filtered back-projection (FBP). Red denotes positive values in the reconstruction, blue

negative ones.

https://doi.org/10.1371/journal.pcbi.1012370.g001
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a strong integrated response. Thus, the suppressive ring effectively leads to a spatial sharpening

of the subunits, such that they can be identified more clearly as hotspots in the model’s

response.

Yet, probing a receptive field with such hat stimuli would be inefficient for two reasons.

Firstly, responses of a ganglion cell to an individual hat stimulus would likely be relatively

weak and might not even reach spiking threshold, since only a small portion of the receptive

field is activated. Secondly, the receptive field would have to be scanned point-by-point over

two spatial dimensions requiring a large number of presentations at different locations.

We thus extended the idea of the spatial sharpening of subunit responses by turning

towards a tomographic version of the concept. If an extensive white stripe is flashed inside the

receptive field (Fig 1E, left), the response of the model will reflect the combined receptive field

intensity lying within the confines of the stripe. Accordingly, if multiple positions (here 60) in

the receptive field are probed by such a flashed stripe, the responses will represent a projection

of the receptive field along the stripe’s orientation (Fig 1E, right). Similarly, if the profile of the

stripe utilizes the same shape introduced before with an excitatory center band and suppressive

sidebands (Fig 1F, left), the responses will represent a projection of the sharpened subunits

(Fig 1F, right). We term such a stimulus a Ricker stripe, since we apply a profile that is given

by the Ricker wavelet (see Methods).

While individual subunits often cannot be identified in one such projection (in the exam-

ple, both response peaks are caused by two subunits each), multiple projections can be mea-

sured by varying the angle of the Ricker stripe (here using 36 angles in steps of 5˚). The

resulting data can be displayed in a so-called sinogram, in which each row corresponds to one

projection at a fixed angle (Fig 1G). In the sinogram, every subunit leaves a sine-like trace that

overlaps with the traces of other subunits for some but not all angles (green line in Fig 1G high-

lights the trace of a sample subunit), and their traces can thus be disentangled.

To reconstruct the subunit layout from a set of projections compiled in a sinogram, we

used filtered back-projection (FBP), one of the most common techniques in the field of tomog-

raphy [35,36]. The FBP reconstruction of measurements with plain white stripes (Fig 1H, left)

resembles the model’s receptive field that can also be measured by probing with a plain white

spot (Fig 1C). Meanwhile, the reconstruction of measurements with Ricker stripes reveals the

locations of the subunits as hotspots (Fig 1H, right) similar to probing with a hat stimulus

(Fig 1D). This tomographic presentation, however, has the advantage of evoking stronger

responses since subunits are triggered more often and partially simultaneously, thereby reduc-

ing experiment time. We will refer to this technique as super-resolved tomographic recon-

struction (STR): While the center-surround structure of the Ricker stripes sharpens subunit

responses and thereby effectively super-resolves them below the scale of the subunits them-

selves, the presentation of stripes at varying positions and angles allows for a tomographic

reconstruction of subunits.

Assessment of subunit identification with simulated data

We extended the overly simplified ganglion cell model used in Fig 1 to test STR in a more real-

istic setting. Firstly, we adopted a procedure to randomly generate layouts of larger numbers

of subunits and also took elliptical subunits with varying degrees of overlap into account. Fig 2

shows sample layouts for 6, 10, and 14 subunits (first column). Just as before, the subunits can-

not be identified from the structure of the receptive fields alone, even if noise-free high-resolu-

tion measurements are considered (Fig 2, second column). The sinograms gathered via the

tomographic presentation of Ricker stripes (Fig 2, third column) show a more complex struc-

ture than in the previous, simple example of Fig 1, and individual subunit traces are
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progressively harder to distinguish as the model comprises more subunits. Nevertheless, the

corresponding reconstructions (Fig 2, fourth column) display a clear hotspot structure with

each hotspot representing the location of a subunit.

Next, we extended the model to include the stochasticity of spiking responses by applying a

Poisson process for spike generation in order to reflect the inherently noisy responses of real

retinal ganglion cells. The Poisson process was used for simplicity, even though ganglion cell

spiking is typically more regular than Poisson noise would suggest, so that this can be viewed

as a conservative assessment of the effect of spiking variability. To tune the range of obtained

spike counts (and thereby the noise level in the simulation), we defined how the expected

spike count from the Poisson process relates to a given activation of the model. To do so, we

first assumed that a full-field flash of 100% Weber contrast (i.e., “white”) would elicit an aver-

age response of 30 spikes, whereas no stimulation yielded zero spikes. For any given summed

subunit signal in response to flashing a Ricker stripe, we then obtained the expected number

of spikes by linear interpolation.

The sinograms in the third column in Fig 2 thus depict the expected spike count (i.e., spike

rate in terms of spikes per stimulus), while the penultimate column contains the actual sto-

chastically simulated spike count in response to one flash of the Ricker stripe for each angle

and position. Although the addition of stochasticity to the model visibly affects the quality of

the sinograms, the resulting reconstructions (Fig 2, last column) still feature apparent hotspot

structures, although there is not always a clear one-to-one correspondence of hotspots and

simulated subunits. Yet, many subunits can nonetheless easily be identified, demonstrating the

potential of STR. Note that the effect of stochasticity could be reduced and reconstructions

Fig 2. Application of STR to model simulations with realistic settings. Three sample layouts with 6 (top row), 10 (middle row), and 14 (bottom row)

subunits are depicted. First column shows the subunit layouts, with black ellipses portraying the 1.5 σ ellipses of the subunits and red ellipses the 1.5 σ ellipses of

the receptive fields. Second column is the receptive field. Third column contains the sinograms for spike rates, i.e., expected spike counts. Fourth column shows

the reconstructions from the sinograms in the third column. Red denotes positive values, blue negative values. Fifth column holds the sinograms for

measurements of stochastic spike counts. Each combination of the 36 stripe angles and 60 stripe positions was measured only once. Gaussian smoothing has

been applied to these sinograms (described in more detail in the main text). Last column pictures reconstructions from the sinograms in the penultimate

column.

https://doi.org/10.1371/journal.pcbi.1012370.g002
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improved by averaging over multiple presentations of the same Ricker stripe, which would, on

the other hand, correspond to longer recording times.

The more realistic model settings introduced above enable us to make a more meaningful

assessment of the influence of certain stimulation and analysis parameters. For instance, to

obtain the results presented in Fig 2, we made the following adjustments that we will also use

as a default for the rest of this manuscript: We chose the width w of the Ricker stripe profile,

defined as the distance of the two zero-crossings, i.e., the width of the white central stripe, to

be w = 5 pixels. For comparison, in the case of models with 10 subunits, the average effective

subunit diameter (diameter of a circle with the same area as the subunit ellipse at 1.5 σ of the

Gaussian profile) lies at 7 pixels, and the average effective receptive field diameter at just under

17 pixels. We also strengthened the sidebands of the Ricker stripes by a multiplicative sur-

round factor s = 2.5 to increase their effect of sharpening the subunits. This entails that a

Ricker stripe produces a net darkening, since its integral is equal to zero only if s = 1. Finally,

sinograms obtained from models employing a spiking process were smoothed by a Gaussian

filter across positions and angles with standard deviations of σpos = 2.5% of the simulation area

size (1 pixel or 1.5 stripe positions) and σang = 5˚ (1 angle step), respectively, to alleviate the

influence of noise (hence the non-integer grayscale values in the penultimate column of Fig 2).

In order to assess the influence of any of these changes, we attempted to quantify the quality

of a reconstruction in terms of how truthfully it reflects the subunit layout. Fig 3A illustrates

the subunit layout (1.5 σ ellipses) and receptive field of a sample model cell that is analyzed

throughout Fig 3, and Fig 3B shows the FBP reconstruction as obtained from stochastic spikes.

As noted before, a successful reconstruction is characterized by the hotspots coinciding with

the locations of the subunits. We therefore first located the hotspots in the reconstruction by

finding all local maxima larger than 30% of the global maximum (Fig 3B, yellow markers). We

discarded any hotspots that might have fallen outside a circle with a diameter of 90% of the

reconstructed area (Fig 3B, blue circle) to avoid artifacts, which often occurred at the edge of

the reconstructed image. This procedure is deliberately simplistic since our aim here is not to

present a state-of-the-art detection algorithm for hotspots, but to merely provide a means for a

quantitative analysis of the reconstruction.

After finding the hotspots, we determined which of them fell inside the 0.75 σ ellipse of a

subunit (Fig 3B, black ellipses; double hits counted as one hit and one miss) and calculated the

F-score, which is a combined measure of precision and sensitivity (see Methods). The F-score

ranges from 0 to 1, with values close to 0 indicating that few subunits had been detected via

hotspots (low sensitivity) and/or that there were many hotspots that did not correspond to

subunits (low precision), and 1 indicating that hotspots and subunits matched perfectly. In the

example of Fig 3B, nine of the ten detected hotspots lay in the 0.75 σ ellipse of a subunit, and

one subunit was not detected, leading to an F-score of 0.9. Since the noise of the spike genera-

tion is an integral part of the challenge of choosing good stimulus and analysis parameters, all

considerations made below, including the calculation of F-scores, assume models with a sto-

chastic spike generation process as in Fig 3B.

With this evaluation system in place, we first examined how the quality of the reconstruc-

tion depends on the characteristics of the Ricker stripes, i.e., their width w and sideband

strength s, while fixing the sinogram smoothing parameters σpos and σang at the default. As

expected, by increasing the width of the stripes and decreasing the strength of the suppressive

sidebands, the model produced a larger number of spikes in response (Fig 3C, left). While this

means that the sinogram is less noisy, it also entails that the reconstruction is more representa-

tive of the receptive field instead of the individual subunits. On the other hand, a narrow stripe

with strongly suppressive sidebands, supposed to sharpen the subunit responses substantially,

results in responses too weak for FBP to reveal many subunits (Fig 3C, right). We thus probed
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Fig 3. Optimal stimulus and analysis parameters. (A) Sample model layout (left) and receptive field (right) used throughout this figure (layout outlines

1.5 σ ellipses of subunits and receptive field). (B) Illustration of the detection of hotspots in a reconstruction. Background image is FBP reconstruction

with red and blue colors representing positive and negative values, respectively. Large dark-blue circle depicts area in which local maxima (yellow crosses)

are identified. Local maxima are compared with 0.75 σ ellipses of the underlying subunits (black) to compute an F-score. (C) Sample sinograms (top row)

and corresponding reconstructions (bottom row) of measurements with varying stimulus parameters. Surround factors s are 1, 2, and 5 from left to right,
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the parameter space of Ricker stripe width w and surround factor s to discover if a proper bal-

ance can be found. Fig 3D shows the average F-score STR achieved for layouts of ten subunits,

and, indeed, certain combinations of the two parameters led to respectable F-scores. The best

F-score of 0.93 was reached using the previously introduced combination of the stripe width

w = 5 pixels and the surround factor s = 2.5 (Fig 3D, black dot).

Similarly, we investigated the effectiveness of smoothing the sinogram in order to overcome

the issue of noise. Fig 3E exemplifies the influence of smoothing in the stripe position-direc-

tion (without any smoothing across angles) and demonstrates that the noise introduced with

the spike generation process greatly impairs the FBP reconstruction if not counteracted (left-

most example involves no smoothing at all). On the other end of the spectrum, too much

smoothing naturally eliminates all finer structures and the reconstruction simply reflects the

receptive field. Again, a balance must be found and we computed the average F-score of lay-

outs with ten subunits to identify this balance (Fig 3F). Doing so, we determined the optimal

standard deviation for Gaussian smoothing to be σpos = 2.5% of the simulation area size and

σang = 5˚–the values that we adopted as our default.

With these optimal parameters, STR achieved an average F-score of 0.93 for layouts of ten

subunits. The remaining 0.07 in performance were primarily due to undetected subunits (54%

of errors), followed by spurious detections (31%). Mislocalized subunits, which we considered

to be a hotspot in the 1.5 σ but not 0.75 σ ellipse of the subunit, only accounted for 14% of

mistakes.

Influence of number of subunits and measurement time

While we here determined the optimal stimulus and analysis parameters for layouts of ten sub-

units, these parameters also worked well for more or fewer subunits. Fig 4A shows that, in the

range of roughly five to fifteen subunits, subunit detection was similarly effective with the

default parameters (blue line) as with parameters optimized for each specific number of sub-

units (red line), and only deviated strongly from the optimal performance for numbers of sub-

units that were considerably larger or smaller than our standard scenario of ten subunits.

In such cases, it is helpful to adjust the stimulus and analysis parameters. While new opti-

mal parameters could again be identified by a similar analysis as done above for layouts of ten

subunits (Fig 3), we found that the optimal parameters largely followed an intuitive scaling

behavior reflecting the spatial scale of subunits. In our simulations, subunit layouts were scaled

to a constant receptive field size for every number of subunits N, so that the diameter of a sub-

unit decreased according to 1=
ffiffiffiffi
N
p

. Since this provides the relevant spatial scaling of the sub-

unit detection task, parameters related to the spatial scale could thus be deduced from the

optimal parameters for ten subunits. Specifically, we scaled the stripe width w and the smooth-

ing in position-direction σpos with 1=
ffiffiffiffi
N
p

, while leaving the surround factor s and the angle-

smoothing σang constant (Fig 4B and 4C). We confirmed that, in our simulations, these scaled

parameters were indeed optimal–or very close to optimal–by performing analyses similar to

the ones in Fig 3D and 3F, and we therefore generally used this scaling relationship to derive

the optimal parameters for a given number of subunits. Nevertheless, even with the optimal

stripe width values w are 10, 5, 4. (D) Search for the optimal parameters in the parameter space of surround factor s and stripe width w. Brighter colors

denote better average F-score for 1000 model instantiations with ten subunits each. Optimal parameters (s = 2.5, w = 5 pixels) are marked by a black dot.

(E) Influence of smoothing the sinogram in position direction on a sample sinogram (top row) and the corresponding reconstructions (bottom row).

Standard deviations σpos of the Gaussian filters are (from left to right) 0%, 1.5%, 3%, 4.5%, and 6% of the simulation area size. Smoothing in angle-

direction is omitted for these plots (σang = 0˚). (F) Like (D), but for search for optimal smoothing of the sinogram in the parameter space of standard

deviations for stripe position smoothing σpos (optimum is 2.5%) and stripe angle smoothing σang (optimum is 5˚).

https://doi.org/10.1371/journal.pcbi.1012370.g003
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Fig 4. Measurement time. (A) Average F-score (over 1000 instantiations) versus number of subunits for the default parameters (blue, optimal for ten

subunits) and for parameters adjusted for each number of subunits (red). (B) Optimal stripe width w and optimal surround factor s, depending on number

of subunits. (C) Optimal position smoothing σpos and optimal angle smoothing σang. w and σpos in (B) and (C) were obtained by scaling with the number of

subunits (rounded to an accuracy of 0.2 and 0.1, respectively), and s and σang were kept constant. (D) Subunit detection performance (F-score) depending

on the ratio of the number of stripe positions versus angles for fixed total numbers of stripe presentations (green: 2160, default; red: half of the default; blue:
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parameters, layouts with many subunits were harder to uncover than layouts with fewer sub-

units (Fig 4A, red line). This is not surprising, as more and smaller subunits should require

more data with higher spatial resolution, for example, by using more stripe positions at denser

sampling, which, in turn, amounts to longer required recording times.

To investigate this issue in more detail and assess the influence of the measurement time,

we varied the number of stripe positions and angles. By default, we had tested 2160 stripe pre-

sentations, corresponding to all combinations of 60 positions and 36 angles (Fig 4D, black

cross). However, using 36 positions and 60 angles instead, led to a similar F-score for our stan-

dard simulation condition, as did a variety of other ratios of the number of positions versus

angles with the same number of total combinations (solid green line). So long as a certain min-

imum number of positions as well as angles was tested, the performance plateaued and was

indifferent to the ratio of positions versus angles. Similar plateaus were also apparent for a

larger (blue lines) or smaller (red lines) total number of stripe presentations, and more (dashed

lines) or fewer (dotted lines) subunits.

To better determine the number of positions required to reach the performance plateau, we

plotted the same data against the absolute number of positions instead of the ratio (Fig 4E).

This demonstrates that the required number of positions was independent of the available

measurement time (all dotted, solid, and dashed lines, respectively, rise at the same point, irre-

spective of color). However, the number and thus size of subunits did influence the minimum

number of stripe positions that needed to be tested; smaller subunits required a larger number

of stripe positions.

We hypothesize that this reflects a required effective resolution, which can be thought of as

the number of stripe positions inside a standard subunit size necessary to distinguish between

subunits. For layouts of ten subunits (Fig 4E, solid lines), using 40 positions ensures that the

effective resolution does not limit the achievable performance. Given the effective subunit

diameter of 7 pixels (derived from the 1.5 σ ellipse) in these simulations and the simulation

area’s size of 40 by 40 pixels, this equates to a required effective resolution of 7 stripe positions

inside a subunit. Scaled by
ffiffiffiffi
N
p

to layouts of N = 4 and N = 16 subunits, one would conse-

quently expect to require 25 and 51 total stripe positions, respectively, to reach the same spatial

resolution per subunit, both reasonable values according to Fig 4E (dotted and dashed lines).

Similarly, a minimum value can also be determined for the required number of angles, but

here neither the measurement time nor the number of subunits had a clear impact (Fig 4F).

To investigate how measurement time impacts the performance of STR depending on the

number of subunits N, we set the number of stripe positions according to the
ffiffiffiffi
N
p

-scaling

derived from the effective resolution as discussed above (using 40 positions for ten subunits)

and used the number of stripe angles as a proxy for the measurement time. To convert the

total number of stripe presentations into a measurement time, we assumed that each stripe

presentation, including a recovery time at homogeneous background illumination, takes 0.6

double the default) and for different numbers of subunits N, using corresponding optimal parameters. Black cross marks the default scenario of ten

subunits, 60 stripe positions, and 36 stripe angles. (E) Same as (D) but with the absolute number of stripe positions on the x-axis, up to a maximum of 100

positions. (F) Same as (D) but with the absolute number of stripe angles on the x-axis, up to 100 angles. (G) Subunit detection performance depending on

measurement time for different numbers of subunits N, each with optimal parameters. Dashed horizontal line marks a threshold of 0.8. (H) Measurement

time required to pass the 0.8 threshold in (G) depending on the number of subunits. (I) Exemplary subunit layout (left) consisting of 50 subunits,

reconstructed with noise-free rate responses (center) and spike responses (right). Ricker stripes were presented at 89 positions (required minimum number

according to scaling described in main text) and with 202 angles, equating to 3 hours of stimulation. Stripe and analysis parameters were scaled as before,

but with a reduced angle smoothing of σang = 2˚. (J) Left: Sample subunit layout with an added temporal filter to simulate responses to spatiotemporal

stimuli. Center: Spatial filters from spike-triggered clustering with locally normalized L1 regularization of the sample layout’s responses to 30 minutes of

coarse binary white noise. Stimulus pixels had a size of 4x4 simulated screen pixels. Red pixels denote positive values, blue pixels negative values, with each

filter normalized to its absolute maximum. Right: Spike-triggered clustering with simulated responses to ten hours of fine white noise (2x2 screen pixels).

https://doi.org/10.1371/journal.pcbi.1012370.g004

PLOS COMPUTATIONAL BIOLOGY Super-resolution tomography to identify receptive field subunits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012370 September 3, 2024 11 / 38

https://doi.org/10.1371/journal.pcbi.1012370.g004
https://doi.org/10.1371/journal.pcbi.1012370


seconds. The F-score of reconstructions naturally improves with longer measurements, but

there is a distinct difference between the quick success with layouts of few subunits and the

slow improvements observed with large numbers of subunits (Fig 4G). We then used an aver-

age F-score of 0.8 as a threshold (dashed line) to define how much measurement time STR

requires for a given number of subunits to be successful. This revealed that the required mea-

surement time grew approximately with the square of the number of subunits (Fig 4H). The

reason for this superlinear increase is that the required measurement time is prolonged not

only by a larger necessary number of stripe positions to achieve the same effective resolution,

but also by, e.g., weaker responses to the narrower stripes needed for layouts with more and

smaller subunits. Yet, despite the N2-scaling, layouts with several tens of subunits should still

be in reach with reasonable experimental time because of the low baseline of less than ten min-

utes for identifying layouts with ten subunits.

In principle, there is no fundamental upper limit to the number of subunits that STR can

reveal. Even layouts consisting of 50 subunits (Fig 4I, left) could be reconstructed if record-

ing time could be sufficiently extended to average out noise (Fig 4I, center). With three

hours of simulated stimulation, which is still in the realm of possibility, the particular sam-

ple layout in Fig 4I was reconstructed with an F-score of 0.94, given optimal stimulation

parameters (right).

These analyses demonstrate that STR has the potential to rapidly and accurately infer sub-

unit layouts and thereby improve subunit detection over existing methods. To provide a con-

crete comparison, we used our simulated subunit model and applied spike-triggered

clustering, which has been shown to infer subunits from less than 30 minutes of recorded data

[31]. Since spike-triggered clustering relies on a spatiotemporal white noise stimulus, we

added a temporal filter to our model to be able to simulate the temporal dynamics of such a

stimulus (Fig 4J, left). This temporal filter is applied at the subunit stage together with the sub-

units’ spatial filters, thus converting the spatiotemporal stimulus into a sequence of subunit

activations. The rest of the model remained identical to our default model, i.e., subunit signals

were summed, rectified, and converted into spike counts via a Poisson process. To keep the

overall sensitivity comparable, we normalized the temporal filter such that a brief light flash of

150 ms produced the same total spike count as in our default model without temporal dynam-

ics, and we applied a temporal discretization at 60 Hz.

To apply spike-triggered clustering, we stimulated the model with 30 minutes of coarse

binary white noise, which led to ~30.000 spikes in response (17 Hz average firing rate). To

then extract spatial filters, we supplied the algorithm with the known temporal filter of the

model to appropriately filter out the temporal dimension and with the known number of sub-

units. Based on this data, we indeed managed to infer localized filters with spike-triggered clus-

tering, but these were few and only corresponded to aggregates of the underlying model

subunits (Fig 4J, center), in line with the observations in the original presentation of the

method [31]. To check whether it was the limited data that prevented spike-triggered cluster-

ing from uncovering the true subunit layout, we also used ten hours of finely structured white-

noise stimulation, evoking ~300.000 spikes in response (9 Hz). Here, spike triggered-clustering

identified many more subunits that matched the true model subunits (Fig 4J, right). Thus,

spike-triggered clustering can yield coarse subunits with tens of minutes of data, but seems to

require at least an order of magnitude longer for finding the true model subunits as compared

to our tomographic approach. This is not surprising given the generic nature of the required

spatiotemporal white noise stimulus and the relatively weak activation of subunits, and is a

property that spike-triggered clustering shares with other subunit identification methods that

work with white noise [27–29].

PLOS COMPUTATIONAL BIOLOGY Super-resolution tomography to identify receptive field subunits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012370 September 3, 2024 12 / 38

https://doi.org/10.1371/journal.pcbi.1012370


Robustness of method

So far, the considered subunit models were all based on the same general structure with fixed

characteristics, like the subunit nonlinearity and the shape and overlap of subunits, and only

varied in the specific subunit layouts. However, different ganglion cell types have different

functional properties, which can also vary depending on, e.g., retinal location [37,38], and

many specifics are not known a priori. Identifying subunits with STR, however, is robust

against variations in subunit signaling, as revealed by changing various model components.

For example, we increased the overlap of the subunits leading to receptive fields with even

less discernible structure (Fig 5, top row, left plots show sample layout and corresponding

receptive field). Nevertheless, noise-free sinograms comprised of firing-rate responses appear

not visibly inferior to those from the default model composition, and reconstructions calcu-

lated from these sinograms still clearly represent the subunit layout (Fig 5, top, center). When

a spiking process is included in the model, sinograms and reconstructions also demonstrate

decent quality (Fig 5, top, right), with the average F-score decreasing somewhat to 0.84, as

compared to the original model characteristics. Much of this loss can be recovered by increas-

ing the stripe width from w = 5 to w = 5.6 pixels. This is because the increased overlap in our

simulations goes along with a larger size of each subunit compared to previous layouts, which

makes the wider stripes more suitable. With this change, an F-score similar to the one for the

default scenario can be achieved, which might be unexpected, since an increased overlap

should make distinguishing the subunits more difficult. However, enlarging the subunits also

increases the size of the 0.75 σ ellipses used to determine if a hotspot corresponds to a subunit,

thereby leading to a potentially better F-score even if the exact same reconstruction would be

obtained. Nevertheless, we conclude that an increased subunit overlap is not per se detrimental

to STR.

The exact shape of the subunits is also not a sensitive factor. We replaced the Gaussian sub-

units of the standard model with subunits whose cross-sections reflect the positive part of a

cosine curve between zero-crossings (Fig 5, second row; for comparability, subunit ellipses

depict the 1.5 σ ellipses of Gaussians fitted to the cosine subunits). Again, the reconstructions

clearly exhibit a hotspot structure that reflects the subunit layout and the average F-score

increased marginally to 0.94.

Other changes to the model’s properties, like modifying the subunit nonlinearities, can

have stronger effects. We replaced the default rectified-linear transformation of subunit signals

with a rectifying nonlinearity that additionally squared all positive values (Fig 5, third row).

Doing so leads to the subunits being directly apparent in the receptive field, because weak exci-

tation of multiple subunits at their overlap evokes a weaker model response than strong excita-

tion of a single subunit at its center owing to the squaring of subunit signals. Note, however,

that Fig 5 shows a noise-free high-resolution receptive field measurement that is virtually

impossible to achieve in a real experiment, and a more realistic spike-triggered average (STA)

under spatiotemporal white noise would likely not reveal any subunits. While the reconstruc-

tion of noise-free responses to Ricker stripes still flawlessly represents the subunits, the recon-

struction obtained from stochastic spiking responses was certainly undermined by the

nonlinearity change, with the average F-score decreasing to 0.76. This performance loss seems

to stem from the noticeably weaker responses to the Ricker stripes (cf. the ticks at the sino-

grams’ grayscale bars) and thus inferior signal-to-noise ratio. This, in turn, is a result of our

choice to set the reference point for the spike count at the maximum response, that is, the

response to a full-field white flash. For Ricker stripe stimuli, which activate the model less

strongly than the full-field flash, the quadratic nonlinearity therefore weakens the responses

compared to the rectified-linear nonlinearity. Indeed, the F-score can be improved up to 0.88
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by making the Ricker stripes wider from w = 5 to w = 6.2 pixels, which, as noted in Fig 3,

increases the response strength.

In the simulations, we had so far assumed all subunits to contribute with an equal weight to

the response of the model, but subunits might realistically contribute differentially, with sub-

units farther from the cell’s center potentially having a weaker connection to it. We modelled

this hypothesis by choosing subunit weights according to a 2D spatial Gaussian that prefers

subunits close to the center. Consequently, subunits in the periphery of the receptive field

played a minor role in activating the modeled ganglion cell, a fact demonstrated by the top two

subunits in the sample layout in Fig 5 (fourth row) being almost irrelevant for its receptive

field. While more central subunits are still well represented in the reconstructions, these outer

Fig 5. Robustness of STR to model variations. Each row demonstrates the effect on STR of one variation of the model via a sample simulation. Layout of the

rows is the same as in Fig 2. Top row shows a model with increased subunit overlap (see Methods for details), apparent from the 1.5 σ subunit ellipses. In the

second row, the Gaussian-shaped subunits were replaced by subunits with a cosine profile. For comparability, the ellipses in the subunit layout depiction are 1.5

σ ellipses of Gaussians fitted to the cosine subunits. Third row contains a replacement of the rectified-linear nonlinearity with a rectified-quadratic

nonlinearity. Weights of the subunits in the fourth row were not all equal as in the default model, but chosen according to a large spatial Gaussian. In this

example, the strongest subunit weight was roughly eight times that of the weakest weight. In the bottom row, a base activity of three expected spikes was added

to all responses.

https://doi.org/10.1371/journal.pcbi.1012370.g005
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subunits are difficult to recognize, thus reducing the average F-score to 0.76. On the other

hand, the significance of the F-score is limited in this case, because it values all subunits

equally, which does not reflect their true contribution to the model’s responses.

As a final variation of the standard model, we added spontaneous activity to the measure-

ments (Fig 5, bottom row), which we implemented by increasing the expected number of

spikes for the Poisson process by 3 irrespective of the stimulus. This is a considerable level of

background activity, as it is similar to the maximum systematic response modulation evoked

by our stimuli. One effect on the FBP reconstruction is a characteristic artifact ring at the

periphery of the reconstructed image. This in itself does not strongly compromise the subunit

reconstruction, as is apparent from the high quality of the noise-free reconstruction. Yet, for

the automated hotspot detection, we had to confine potential hotspot locations to a circle with

a diameter of 90% of the reconstruction region. More importantly, however, the overall noise

in the reconstruction is strongly increased by adding spontaneous activity, leading to a

decrease in the average F-score to 0.58. The F-score could be improved to 0.70 by making the

Ricker stripes slightly wider with w = 5.2 pixels and increasing the standard deviations of the

Gaussian smoothing of the sinogram from σpos = 2.5% to σpos = 3% and from σang = 5˚ to σang

= 7.5˚, thereby counterbalancing the noise to some degree. Yet, substantial levels of back-

ground noise can evidently have a significant influence on the quality of the FBP

reconstruction.

In addition to uncertainty about model details like the subunit nonlinearity, the retinal cir-

cuitry also differs from the simple LNLN structure with a single subunit mosaic that we have

assumed here. For example, parasol ganglion cells in the primate retina receive input from

multiple types of bipolar cells [39–43], which may form independent superimposed subunit

layouts. We approached this issue with models that also received signals from two separate

subunit layouts, each contributing 50% of the input weight. The subunits in these layouts

might be entirely equivalent and only distributed at different positions (Fig 6A, left, first layout

consists of black ellipses, second layout of green ellipses). In this case, the standard stimulus

(Fig 6A, center) produced a reconstruction that represented a combination of both layouts

(Fig 6A, right). Coinciding subunits were reflected by strong hotspots (left arrow), whereas

other hotspots may correspond to a subunit from only one layout (middle arrow), or appeared

to merge subunits from differing layouts (right arrow). When combined with the unreliability

of spiking, this complicates the interpretation of the reconstructions, even though using the

hotspots to predict the subunit locations of each layout still yielded an average F-score of 0.70

with respect to the task of detecting a single of the two layouts.

In most cases, however, one would expect the subunits from different layouts to differ in

some characteristics, like their size (Fig 6B). We therefore combined a layout of four large sub-

units (black ellipses) with another layout of 16 small subunits (green ellipses). Interestingly,

varying the stimulus and analysis parameters can now be used to distinguish between the lay-

outs. By applying wide Ricker stripes with w = 8 pixels and strong smoothing with σpos = 4%,

thus using values optimized for four-subunit layouts, the large-subunit layout is identified

quite well (Fig 6B, top row). This approach achieved an average F-score of 0.84 for the large

layout, compared to 0.99 for sole four-subunit layouts. With narrow stripes and weak smooth-

ing (w = 4 pixels, σpos = 2%), on the other hand, the layout with small subunits could be recon-

structed (Fig 6B, bottom row), reaching an average F-score of 0.73, compared to 0.83 for sole

16-subunit layouts. Consequently, size differences between the subunits of superimposed lay-

outs can be exploited by targeting stimulation and analysis to recover both layouts

independently.

Incident subunit signals may also differ in their response polarity (Fig 6C), with one layout

consisting of regular On subunits (black ellipses) and the other composed of Off subunits
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Fig 6. Variations to the model structure. (A) Receptive field and subunits (left) of a model with two superimposed subunit layouts (black and green ellipses,

respectively), each consisting of ten subunits. Measurements with Ricker stripes (center) yields reconstructions depicted for rate responses and spiking

responses (right). Arrows highlight subunits/hotspots described in main text. (B) Same as (A), but for a model with two layouts of differently sized subunits,

one containing four subunits (left, black ellipses) and one containing 16 subunits (green ellipses). Measurements with wide Ricker stripes (top row) lead to

different reconstructions (right) than measurements with narrow stripes (bottom row). (C) Same as (A), but for a model with one On (black ellipses) and one

Off (green ellipses) subunit layout. The depicted receptive field is for On-type stimulation. Measurements with stripes of different polarity (top and bottom

row) lead to different reconstructions. (D) Depiction of an LNLNLN model with Gaussian photoreceptors (blue ellipses, representing 1.5 σ contours). Green

lines display the connection weights between photoreceptors and subunits by their width.

https://doi.org/10.1371/journal.pcbi.1012370.g006
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(green ellipses). This suggests using Ricker stripes of differing polarity to recover each subunit

layout independently of the other. However, the strong sidebands of the Ricker stripes pose a

potent stimulus for the layout of the opposite polarity, causing strong interference and pre-

venting straightforward independent analysis. This can be mitigated somewhat by drastically

lowering the surround factor from s = 2.5 to s = 1.0 among other changes (w = 3 pixels, σang =

7.5˚) to reconstruct the On and Off subunit layouts individually (Fig 6C, top and bottom row).

Using these settings, coinciding subunits from the On and Off layouts are the most reliable to

be reconstructed (bottom left arrow), similar to the case of independent layouts of same size

and same response polarity (Fig 6A). In addition, some On subunits are only visible in the On

reconstruction (top left arrow) and some Off subunits only in the Off reconstruction (top right

arrow). However, due to the necessary changes to the stimulus, hotspots are not well separated

and responses weak, such that reconstructions from spiking responses are of medium quality

only, reaching an average F-score of 0.67 for the layout of the targeted polarity.

Subunit models as the ones discussed here typically assume that the subunits themselves

integrate sensory signals in a linear fashion and the first nonlinearity occurs at their output.

For the vertebrate retina, however, nonlinearities prior to the bipolar-cell-mediated subunits

have been reported, as seen by spatially nonlinear integration in the bipolar cell membrane

potential [44] or in nonlinear signal transformations by photoreceptors [45–47]. We simulated

such a scenario by creating a mosaic of photoreceptors (Fig 6D, left, blue ellipses) and connect-

ing these to the bipolar cell subunits (black ellipses, thickness of green lines signifies connec-

tion strength; see Methods for details). Photoreceptor signals were nonlinearly transformed by

a piecewise linear function with a slope of 0.5 below and unity above zero, reflecting the fact

that photoreceptors do not fully rectify their output and that this first nonlinearity is likely

much weaker than the subsequent one at the bipolar cell output. The additional nonlinear-

integration stage gives rise to an LNLNLN model. For the ability of STR to identify the (bipo-

lar-cell-mediated) subunits, however, moderate nonlinear integration within subunits only

had a minor effect. By just slightly adapting the stimulation parameters (w = 4 pixels, s = 3.0),

subunits could be reconstructed almost as effectively as before (Fig 6D, right), reaching an F-

score of 0.90 compared to the initial 0.93. Furthermore, one might speculate that the layout of

photoreceptors could also be identified if sufficiently fine Ricker stripes are applied, similar to

the scenario of Fig 6B. In our simulations, this was indeed the case with noise-free rate

responses, but the responses evoked by the narrow stimuli were too weak for reconstruction

from spiking responses. In total, the analyses of Figs 5 and 6 demonstrate that STR is robust

against many modifications to the structure and details of our ganglion cell model.

Limitations of reconstruction with filtered back-projection

While FBP is a simple and easy-to-use algorithm to reconstruct the subunit layout, it is not

designed for our specific reconstruction problem. In particular, the spatial width of the applied

Ricker stripes means that the receptive field structure near the tested position also influences

responses. Furthermore, the nonlinearities inherent in the ganglion cell model represent a

deviation from the Radon transform for which FBP is designed as a reconstruction method.

We therefore considered how the specifics of FBP may limit its suitability for subunit detec-

tion. Aside from the susceptibility to noise in the measurements, as discussed above, a particu-

lar caveat concerns the reconstruction of elliptical subunits. Indeed, the circular symmetry of

subunits that we had assumed in Fig 1 is clearly an abstraction, and elliptical shapes with dif-

ferent levels of eccentricity are rather the norm in the retina [27,31].

For our stimulation with Ricker stripes, this means that the mean luminance inside an ellip-

tical subunit, even if the stripe precisely hits its center, can still depend heavily on the stripe’s
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orientation. If the stripe is oriented perpendicular to the major axis of the subunit (Fig 7A,

left), the suppressive sidebands may influence the subunit much more than for a stripe ori-

ented parallel to it (Fig 7A, right). Consequently, the response elicited by that subunit can

depend drastically on the angle of the stripe and might even be completely suppressed for

some angles (Fig 7B). In X-ray tomography, this phenomenon would correspond to strongly

anisotropic absorption, which FBP does not take into account. Instead, the reconstructed sub-

unit is smeared out along its major axis and negative troughs are reconstructed adjacent to it

(Fig 7C, red denotes positive values, blue negative values). While the elliptical subunit can still

readily be identified in this simple example consisting of just the one subunit, these effects can

overlap in more complex layouts and undermine the quality of the FBP reconstruction. The

extent of this effect also depends on the subunit nonlinearity–the rectifying and squaring non-

linearity mentioned before, e.g., will magnify this issue. Nevertheless, as demonstrated before,

FBP reconstructions still reproduce the locations of many subunits. Yet, by taking the effects

described here into account, an alternative reconstruction method might help locate subunits

more consistently, reduce trough effects in the reconstruction, and determine the subunit

shape more accurately.

Fig 7. Shortcomings of FBP as a reconstruction method for subunit layouts. (A) Sample stimuli of a vertical (left)

and a horizontal (right) Ricker stripe hitting the center of an exemplary elliptical subunit (here in green). (B) Rate

responses of a model consisting of only that one subunit depicted as a sinogram. (C) Resulting reconstruction via FBP

from the sinogram in (B). Red denotes positive values, blue negative values.

https://doi.org/10.1371/journal.pcbi.1012370.g007
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Experimental test

In order to experimentally test our method, we performed an electrophysiological recording of

ganglion cells in an isolated marmoset retina using a multielectrode array while projecting

light stimuli onto the retinal photoreceptors. Using responses to a spatiotemporal white noise

stimulus, we identified On and Off parasol cells, which we expected to exhibit the most pro-

nounced subunit structure due to their spatially nonlinear characteristics. Both cell types dis-

played a fast biphasic filter, tiling of visual space by their receptive fields, and consistent

autocorrelation functions and output nonlinearities (Fig 8A). Off parasol cells had an average

effective receptive field diameter of 111 ± 9 μm (mean ± standard deviation) and On parasol

cells of 138 ± 11 μm, both values in line with dendritic field sizes in the marmoset peripheral

retina [48].

For the experiments, we adjusted the Ricker stripe stimulus in two major ways: Firstly, we

decided to mainly target Off parasol cells, which, for the macaque retina, had been shown to

have stronger spatial nonlinearities in the receptive field than their On-type counterparts

[15,49]. We therefore flipped the polarity of the Ricker stripes, now using a black center and

white sidebands, which are excitatory and suppressive, respectively, for Off cells. Second, to be

able to probe a larger portion of the tissue simultaneously, we employed multiple parallel

Ricker stripes (Fig 8B shows an excerpt of the screen). The stripes had a safety distance of

375 μm between them to ensure that only one stripe hits a given receptive field center for any

stimulus presentation. While a neighboring stripe may fall into the surround of a cell’s recep-

tive field, its effect will most likely only be weakly modulating the response because of the dis-

tance from the receptive field center and because of the presumably larger spatial scale of

nonlinearities in the surround [50]. The Ricker stripes were flashed for 153 ms separated by

447 ms of full-field gray background illumination, and all spikes occurring during the flash of

the stripes were used to compose the sinograms. Our choice of stimulus parameters was guided

by our simulations with some adjustments. In the simulations, we had used a simulated area of

40 by 40 pixels, with about 20 by 20 pixels being occupied by the receptive field of the model.

In the experiments, the effective receptive field diameters of Off and On parasol cells corre-

sponded to 15 and 18 screen pixels, respectively, such that parameter values are roughly com-

parable. We decided to use a stripe width of w = 6 pixels and a surround factor s = 1.5.

Reducing the surround factor was motivated by our expectation of incomplete rectification by

the subunit nonlinearity, resulting in a component of linear spatial integration, which could

weaken ganglion cell responses and decrease the signal-to-noise ratio. Similarly, we chose the

slightly larger stripe width to make sure that cells with a supposedly easier-to-reconstruct

small number of subunits were stimulated appropriately. The number of stripe positions (75,

covering a distance of 50 pixels in steps of 2/3 of a pixel) and the number of stripe angles (36)

matched the default choice of the simulations. In the experiments, each combination of posi-

tion and angle was presented three times to yield an averaged response.

Measured sinograms (Fig 8C) showed a strong overall curvature, even extending beyond

the edges of the sinogram, owing to the receptive fields–in contrast to the setting in the simula-

tions–not being centered on the screen. Note that the sinograms here are cyclical, because

each stimulus consists of multiple Ricker stripes. That is, when the overall structure in the

sinogram crosses the edge, this corresponds to a transition from one specific stripe hitting the

receptive field at the farthest shift in one direction, to the neighboring stripe hitting the recep-

tive field at the farthest shift in the other direction. This effect can easily be compensated for,

however, by redefining the zero-position in the sinogram. For a given angle, we set the zero

position to the stripe position that was closest to the receptive field center known from white

noise stimulation. Fig 8D shows such a corrected sinogram, including a Gaussian smoothing
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Fig 8. Experimental application of STR. (A) Autocorrelation functions, receptive fields (RFs) displayed as 1.5 σ ellipses

of Gaussian fits (one distant cell not included), temporal STAs (normalized to unit Euclidean norm), and nonlinearities

(scaled to equal maximum) of all identified Off (top) and On (bottom) parasol cells. (B) Excerpt of a sample stimulus

projected onto the retina during a flash. (C) Unprocessed sinogram of a sample Off parasol cell. (D) Same sinogram as in

(C), but processed by correcting for the receptive field position and applying a Gaussian filter. (E) Overview of the results
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with a standard deviation of σpos = 7.5 μm (which is equivalent to the 2.5% of the simulation

area size used before) and σang = 5˚ applied. This makes the sinogram similar in appearance to

the smoothed sinograms in the simulations analyzed above, which had led to successful detec-

tion of the model’s subunits.

STAs of Off and On parasol cells computed from an hour-long white noise stimulus with

high spatial resolution displayed generally little structure inside the receptive fields (Fig 8E, left

column, shows four sample cells). The average peri-stimulus time histograms (PSTHs) for the

tomographic stimulus, calculated by averaging over all stripe positions and angles, demon-

strate a strong response to the onset of the Ricker stripe flash and also a noticeable response to

its offset for most cells (Fig 8E, middle column, yellow background marks duration of stripe

flash). The upper two sample reconstructions in Fig 8E (right column) were calculated for two

Off parasol cells from the responses that occurred during the stripe flashes. Hotspots are less

clearly delineated as in the simulations, but can generally still be recognized.

In addition to the strong response to the onset of the Ricker stripes, the offset response can

also be analyzed. This is most informative for On parasol cells, where an analysis of the offset

response via the same methods described above for the onset can also reveal a hotspot struc-

ture in the reconstruction that is not apparent from the STA (Fig 8E, third row). The sample

On parasol cell in Fig 8E is the best example in our dataset and shows four clearly distinct hot-

spots suggesting that the receptive field of that cell is composed of four subunits. Consequently,

while the stimulus we used in the experiments was targeted towards Off cells, the receptive

field substructure of cells of the opposite polarity can still be examined by focusing on the off-

set response.

Finally, we also inspected the offset response of Off parasol cells. Under the applied dark-

center Ricker stripes, where the stimulus offset amounts to a brightening at the stripe center

and a darkening of the sidebands, responses are mostly triggered when the sidebands fall onto

the receptive field center and the stripe center onto the surround. Consequently, the recon-

struction primarily uncovered a center-surround structure, but little substructure either in the

center or the surround. Although one might hope that this offset analysis might reveal subunit

structure in the surround of Off parasol cells, the stimulus parameters are unlikely to be suited

for this. Since the average luminance of the Ricker stripes is dominated by the sidebands (due

to the surround factor s>1) and spatial integration in the surround of ganglion cells might

occur on different spatial scales than in the center [50], the surrounding ring in the reconstruc-

tion presumably reflects activation of the receptive field center by the offset of the suppressive

sidebands, rather than a response of the surround itself. Consequently, for a given cell, only

the responses that correspond to the stimulus part where the center of the Ricker stripe under-

goes a light-intensity step with the cell’s preferred contrast (for the dark-centered stripes

applied here, these are the onset responses for Off cells and offset responses for On cells)

appear to be relevant for our approach.

of four sample cells. Left column depicts spatial STAs, middle column illustrates PSTHs (yellow background designates

presentation of the Ricker stripes), right column shows reconstructions from the processed sinograms via FBP. Red

colors in reconstructions denote positive values, blue colors denote negative values. Spatial scales of STAs and

reconstructions are equal, but reconstruction has higher resolution. PSTHs were computed irrespective of the angle and

position of the stripes with a bin size of 10 ms. Sample cell in top row is same cell as in (C) and (D). Bottom two rows

contain the results of an analysis of the offset responses of cells. (F) Reconstructions of the sample Off parasol cell from

the top row of (E) from separate analyses of the first and second halves of the measurement. (G) Same as (F), but for the

On parasol cell from (E). (H) Distribution of the number of hotspots identified in the reconstructions across all recorded

Off and On parasol ganglion cells. Colored ticks at the bottom mark the medians for the two cell types. (I) Distribution of

the average distance of a hotspot to its nearest neighbor in each ganglion cell’s reconstruction. Ticks at bottom mark the

medians.

https://doi.org/10.1371/journal.pcbi.1012370.g008

PLOS COMPUTATIONAL BIOLOGY Super-resolution tomography to identify receptive field subunits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012370 September 3, 2024 21 / 38

https://doi.org/10.1371/journal.pcbi.1012370.g008
https://doi.org/10.1371/journal.pcbi.1012370


Whether the hotspot structure in the reconstructions actually corresponds to subunits and

potentially bipolar cells or is just a result of the noise of the measurement is not immediately

clear, as we do not have a ground truth available for the experimental data. Thus, to probe the

reliability of the recovered substructure in the receptive field, we split the measurement of the

tomographic stimulus into a first and second half and analyzed them separately for compari-

son. The resulting reconstructions demonstrate that similar receptive field substructure may

result from independent data sections (Fig 8F, cell shown is the top Off parasol cell from Fig

8E, and Fig 8G, sample cell is the On parasol cell from Fig 8E), corroborating the biological

origin of the derived structures. This was not as apparent for all cells in our dataset, however,

as other sample cells could show misaligned hotspots from the two halves of the data or unclear

structure. This could suggest that the reconstructions were governed by noise and that a reli-

able subunit structure may not be discernible with STR in these cells. On the other hand,

responses of these cells might not have been sufficiently stable over the recording duration, or

using only half of the data, where some stimuli were presented only once, others twice, could

be insufficient to get reliable reconstructions.

Despite the remaining uncertainty regarding the experimentally obtained reconstructions,

we aimed at exploring their characteristics across the population of recorded cells. We there-

fore applied the same hotspot detection used previously, identifying local maxima surpassing

30% of the global maximum, and interpreted the hotspots as centers of identified subunits. In

this analysis, the number of hotspots found for Off and On parasol cells differed systematically

(Fig 8H, Mann-Whitney U test: p = 0.007). While Off parasol cells had a median of four hot-

spots, the median for On parasol cells lay at 6.5. These numbers are roughly in line with previ-

ous functional studies [31,51], but lower than expected from an anatomical viewpoint [9,39],

potentially because not all subunits, e.g., ones with weaker connections to the ganglion cell,

could be detected.

We also aimed at extracting the size of putative subunits, even though the reconstruction is

aimed at providing their locations, but not their shape or outline. Yet, the size of subunits

should be similar to their distance to their neighbors, since the subunits can be expected to tile

visual space. We therefore calculated the average nearest neighbor distance of hotspots in each

ganglion cell’s reconstruction. This yielded similar sizes for Off and On subunits (Fig 8I,

Mann-Whitney U test: p = 0.87), with medians of the average nearest neighbor distances at

34 μm and 36 μm for Off and On parasol cells, respectively. These values are consistent with

dendritic tree sizes of diffuse bipolar cells in the marmoset retina (diameters typically ranging

from 30 μm up to 80 μm [41,42,52]), which are thought to represent the primary source of

excitatory input to parasol cells. Thus, the analysis of the recorded data indicates the feasibility

of the approach for real ganglion cells, but more systematic experimental explorations will be

required in the future to assess the biological insight that can be gained from this approach to

subunit identification.

Discussion

Spatially nonlinear integration of luminance signals inside the receptive fields of ganglion cells

is mediated via subunits, which are thought to correspond to the retina’s bipolar cells [17].

Inferring the subunit layout from electrophysiological measurements of a ganglion cell prom-

ises a new avenue towards understanding the functional properties of the retina’s circuitry.

Several studies have proposed methods for subunit inference [26–31], but these typically

require long recordings with finely structured stimuli that are inefficient in driving responses

of ganglion cells. This makes it difficult, for example, to retain sufficient experiment time for

studying the uncovered structure in more detail and relate it to functional analyses of stimulus
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encoding. We here introduced the method of super-resolved tomographic reconstruction

(STR) that combines concepts underlying STED microscopy and tomography to identify sub-

units from retinal ganglion cell recordings. STR consists of flashing Ricker stripes–named after

the Ricker wavelet that describes their center-surround profile–with varying angles at different

positions in the receptive field (Fig 1).

The evoked ganglion cell responses can be arranged in a sinogram and the subunit layout

can be reconstructed from that sinogram, for example by applying filtered back-projection

(FBP). Simulations demonstrated that hotspots in the FBP-based reconstruction reliably corre-

sponded to subunits (Fig 2). To optimize performance, especially when data are noisy, stimu-

lus and analysis parameters can be tuned according to the response properties of the

investigated neurons (Fig 3). This enables accurate identification of subunits and provides a

substantial decrease of required recording time compared with previous methods (Fig 4). STR

also proved to be robust against varying the specifics of the subunit model (Fig 5) or deviations

from the classical subunit model structure with a single mosaic-like layer of subunits (Fig 6),

even though distortions of the reconstructed subunit layout can occur for non-circular sub-

units when employing FBP as a reconstruction algorithm (Fig 7). Application to recordings of

parasol ganglion cells in the primate retina indicated the experimental feasibility of the

approach, although further experimental explorations will be required to evaluate the reliabil-

ity of the results (Fig 8).

Relation to STED microscopy and tomography

Our super-resolution approach is conceptually related to stimulated emission depletion

(STED) microscopy [32,33]. In regular confocal fluorescence microscopy, a specimen contain-

ing fluorescent molecules is scanned with an excitatory spot of light. The resolution of this

microscopy technique is determined by the size of the area that emits fluorescent light, which,

in turn, is given by the size of the excitatory spot of light. Due to Abbe’s diffraction limit, how-

ever, a spot of light cannot be focused to an arbitrarily small size, thereby limiting the resolu-

tion. STED microscopy therefore introduces a second source of light, shaped like a ring, which

depletes fluorescence. Any remaining fluorescent light emission is thus confined to areas that

were covered by the excitation but not depletion light. Consequently, the area emitting fluores-

cent light shrinks, thereby improving the resolution compared to confocal fluorescence

microscopy beyond Abbe’s diffraction limit.

In the context of subunit identification, the spatial extent of the subunits takes the role of

Abbe’s diffraction limit. Pairs of subunits that overlap are difficult to separate by spots of light

alone, just like pairs of fluorescent molecules with a distance less than the diffraction limit can-

not be excited separately. However, the addition of the suppressive ring around the spot of

light shrinks the area in which subunits are responsive to the stimulus. A subunit not quite

centered with regard to the stimulus is excited by the central spot, but simultaneously

“depleted”, i.e., suppressed, by the ring of opposing contrast, just like the fluorescence signal

from an off-center molecule in STED microscopy is suppressed by the depletion ring sur-

rounding the center of the excitation. Like in STED microscopy, this effect here leads to a

super-resolution of the subunit layout beyond what simple spot-like stimulation would

suggest.

As a second concept, we introduced a tomographic variation of the super-resolution stimu-

lus in order to evoke stronger responses and sample the receptive field more efficiently. Bars of

light have long been used to qualitatively study receptive field properties of visual neurons

[53,54], and Sun and Bonds [55] introduced the application of filtered back-projection to

quantitatively determine the receptive fields of cells in the cat lateral geniculate nucleus (LGN).
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Since then, this approach has been employed to locate receptive fields in various systems

including the goldfish, zebrafish, and mouse retina [56,57], primate LGN, V1, and V2 [57–59],

and even fMRI of human visual cortex [60]. Previous studies of retinal ganglion cells have

shown that the tomographic analysis scheme can markedly accelerate receptive field estima-

tions [56,57], compared to stimulation with individual spots of light or spatiotemporal white

noise. We believe the same effect to apply in our tomographic approach with super-resolution

stimuli for subunit identification, as Ricker stripes constitute a much more potent stimulus for

driving ganglion cells than small spots with suppressive rings or spatiotemporal white noise at

the required high spatial resolution (Fig 4).

Nevertheless, differences between the ganglion cell system investigated here and X-ray

tomography may complicate the analysis of the sinograms and limit the applicability of FBP.

The FBP algorithm provides a discrete approximation of the inverse Radon transform [34]. In

the context of X-rays, the Radon transform describes the absorption of the beams travelling

through an object. In more general terms, it calculates projections of an object in various direc-

tions. If the stimulus used here was an infinitesimally narrow bar without suppressive side-

bands, the Radon transform would perfectly describe the responses of our standard ganglion

cell model. However, since the Ricker stripes have a finite width and the suppressive sidebands

trigger the nonlinearities in the system, the Radon transform reflects only an approximate

description of the system. Consequently, deviations occur in the inverse Radon transform, e.g.,

when the nonlinearity of an elliptical subunit is triggered differentially for different angles (Fig

7). Thus, improvements to the reconstruction of the subunit layout could come from replacing

or amending FBP by an appropriate reconstruction algorithm that does not rely on the inverse

Radon transform. Iterative reconstruction methods or deep learning approaches potentially

combined with LNLN models to replace the Radon transform and with appropriate regulariza-

tion schemes are promising starting points [34,61–64].

Identification of subunits from reconstructions

The main objective of the present work has been to obtain reconstructions that can be viewed

as a representation of the subunit layout within the receptive field of a retinal ganglion cell. In

the idealized scenario of simulated, noise-free ganglion cell responses, the individual subunits

were easily identifiable as hotspots in the reconstructed image. When noise or other complica-

tions were added to the simulations or when experimental data were considered, the corre-

spondence of hotspots and subunits became less clear. For simplicity, we evaluated the

reconstructions by detecting hotspots as local maxima, but future applications may take a

more sophisticated approach, such as fitting a mixture of Gaussians to the reconstruction or

employing advanced blob-detection algorithms [65]. Clearly, however, the success of any sub-

unit identification technique will depend on how distinct and reliable the hotspots in the

reconstructed images are.

Regarding our experimental results, the observation of partially differing hotspot locations

obtained from the first versus second half of the recording (Fig 8F and 8G) exemplifies the lim-

its of our approach. Multiple causes for the observed differences are conceivable, and most of

them could be remedied in future experiments. For example, the recording quality of the ana-

lyzed experiment may not have been sufficient. In particular, the ganglion cells measured here

might not have maintained sufficiently stable responses during the recording to warrant a

comparison of responses separated by about 45 minutes. Electrophysiological measurements

from isolated retinas can decrease in quality over time with responses often becoming more

sluggish later on, which can have an effect on the cells’ response accuracy to the fine Ricker

stripes. In this case, the recording’s first half (or first trial) might in fact have yielded a good
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correspondence of hotspots and subunits, but without knowledge of the ground truth this can

hardly be determined. Simultaneous recordings of connected bipolar cells, as previously per-

formed in the salamander retina [27], might help assess whether identified subunits do indeed

represent bipolar cell receptive fields, but such experiments have been difficult, in particular in

the mammalian retina.

Another potential source of hotspot and subunit discrepancy might lie in our choice of

stimulus parameters. We took a conservative approach, opting for somewhat wider Ricker

stripes with weaker sidebands than our simulations suggested, in order to ensure adequate

response strength. That goal was easily met, but at the same time there appears to be too little

sharpening of subunits, judging from the lack of distinctly separated hotspots in experimental

compared to simulated reconstructions. This could also be a reason for why we identified sig-

nificantly lower numbers of hotspots than the expected number of bipolar cells anatomically

connected to each ganglion cell [9,39]. On the other hand, functional subunits may differ from

anatomical bipolar cells, at least in primate [31,51]. Nevertheless, in future applications, a gen-

eral line of thought to follow when deciding on the parameters of the Ricker stripes would be

to choose their width w to be similar to or slightly smaller than the expected diameter of sub-

units and increase the sideband strength s as much as the evoked responses permit to sharpen

the contributions of individual subunits.

Furthermore, we decided to target our stimulation towards Off parasol cells by using Ricker

stripes with dark centers and bright sidebands. This was motivated by previous observations

that Off parasol cells receive more strongly rectified input signals than On parasol cells in the

macaque retina [15,49]. Here, we observed that offset responses of On parasol cells are not

inferior for our analysis to onset responses of Off parasol cells, which is in line with previous

findings about spatially nonlinear responses of parasol cells to grating on- and offsets [49].

Alternatively, it could suggest that marmoset On parasol cell measurements are more suitable

for our method than expected, in line with recent observations that, in the marmoset retina,

On parasol cells may display particularly strong spatial nonlinearities [66].

Other limits of subunit identification from experimental data may also stem from the inves-

tigated retinal circuitry itself. While On and Off parasol ganglion cells in the primate retina are

often considered to receive most of their excitatory synaptic input from a single type of bipolar

cells each, namely diffuse bipolar cells DB4 and DB3a, respectively, other bipolar cell types

may also contribute substantially [39–43]. We have shown in Fig 6 that input from two super-

imposed subunit layouts can make subunit identification more difficult, but not impossible. In

addition, we had there assumed both layouts to contribute equally strong inputs. In reality,

often one bipolar cell type can be assumed to provide principal, though not exclusive input,

which should facilitate reliable reconstruction of the corresponding dominant subunit layout.

Bipolar cells are also connected via gap junctions [67], which support, e.g., motion sensitivity

[68], and these couplings could influence spatial stimulus integration and effectively blur indi-

vidual subunits. Moderately nonlinear spatial integration in the receptive fields of subunits

themselves, as observed for some bipolar cells in the salamander retina [44], however, did not

pose a major issue for STR (Fig 6D).

Additional complications in the experimental data, compared to the simulations, may arise

from the receptive field surround of bipolar cells [69,70] and from interactions with inhibitory

amacrine cells. The center-surround structure, however, would be in line with the profile of

the Ricker stripes and should thus rather add to the sharpening of responses when the stripe is

aligned with the center of a subunit. More problematic could be the influence of amacrine

cells. A multitude of different amacrine cell types are known [71], but their functions remain

largely unclear [72]. One hypothesis is a linearization of the nonlinear bipolar-to-ganglion cell

synapses [49,73]. Such effects could hamper the success of STR, since it relies heavily on the
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rectification of excitatory subunit signals. Pharmacological intervention to block inhibition

could be a way to better isolate the feed-forward signal processing structure investigated here.

Implications for circuit analysis

Despite the caveats regarding the correspondence of hotspots in the reconstruction of experi-

mental data to subunits, STR has the potential to identify subunits in a time-efficient manner.

Our simulations suggest that far less than half an hour of recording time can be sufficient

(Fig 4H), and we partly also observed significant hotspot structures in FBPs from relatively

short experimental measurements (Fig 8G). The potential to acquire sufficient data with such

short measurements is due to the Ricker stripes serving as a more potent stimulus for driving

ganglion cell responses than, e.g., fine spatiotemporal white noise. In addition, no computa-

tionally intensive post-processing is required, such that accurate reconstructions of subunit

locations could be available within less than 30 minutes of experiment time, which is signifi-

cantly faster than existing methods [26,27,31]. A further reduction might be achieved by opti-

mizing the presentation times of the Ricker stripes or employing more advanced

reconstruction techniques to deal with the limited data. Since this could also make reconstruc-

tions of layouts with large numbers of subunits feasible (Fig 4I), STR could be useful for resolv-

ing the discrepancy between the higher number of subunits expected from anatomical studies

[6,9,39] compared to findings in functional studies [26,27,31,51].

Rapid subunit identification leaves ample recording time to make use of the obtained sub-

unit layouts for in-depth studies of the retinal circuitry. By knowing the subunit locations, tar-

geted stimuli can be manufactured to characterize the spatiotemporal integration properties,

nonlinearities and functional synaptic weight of each subunit, and evaluate their similarity

across multiple subunits within one ganglion cell receptive field. Interactions between bipolar

cells, e.g. via gap junctions, underlying computational functions like motion processing

[68,74], could also be investigated more closely by stimulating individual subunits in a specific

temporal order. Moreover, since ganglion cell receptive fields tile visual space, one can expect

two neighboring ganglion cells to share some of their subunits, corresponding to shared excit-

atory input [27]. By studying the same subunit via responses of multiple ganglion cells, gan-

glion and bipolar cell effects can be disentangled and processes like global and local contrast

adaptation [75–77] be investigated in greater detail.

Furthermore, since the number of ganglion cell types generally exceeds the number of bipo-

lar cell types [20], some, if not all, bipolar cell types provide input to multiple ganglion cell

types, so that, consequently, the subunit layouts of some ganglion cell types should coincide. If

such common subunit layouts could be identified, this would provide a way of studying how

amacrine cells shape the signals that bipolar cells send to ganglion cells [25,78]. In theory, by

identifying all subunit layouts, relating subunit properties to bipolar cell types and studying

the transmission strength of each bipolar to ganglion cell type by targeted stimuli, a fairly com-

plete functional connectome of this part of the retina might be in reach, at least as far as con-

nections with sufficiently nonlinear transmission are concerned.

Potential method extensions

One possible adaptation of the Ricker stripes that might be helpful for some ganglion cell types

could be the inclusion of color. For example, the small bistratified ganglion cell in the primate

retina is characterized by blue On and yellow Off responses, which are likely conveyed by

excitatory input from two types of bipolar cells–a blue-sensitive On bipolar cell and a yellow-

sensitive Off bipolar cell [79] (but see [80]). Both can be expected to form overlapping subunit

layouts, and we have shown in simulations that two layouts of opposing polarity are not
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straightforward to resolve (Fig 6C). Nevertheless, by using stimuli with an appropriate chro-

matic makeup to independently activate different photoreceptor populations [81], the color-

specificity of the small bistratified ganglion cell’s inputs could be exploited. For example, S-

cone-isolating Ricker stripes with an On-type blue center could be applied to reconstruct the

blue-sensitive subunits and, conversely, S-cone-silencing stripes with an Off-type center to

reconstruct the yellow-sensitive subunits.

Some of the analysis concepts introduced here may also be of interest for studying nonlin-

ear processing beyond the retina. Subunit models have also been applied to primary visual cor-

tex [82–84] and higher motion processing cortical areas [85,86] as well as to the auditory

system [87–89]. Complex cells in the primary visual cortex, for example, display strongly non-

linear response characteristics which can be modeled by subunits that resemble simple cells

[54,90] in a way comparable to the subunits of nonlinear ganglion cells [91]. A clearer picture

of the organization of these subunits may help understand the functional circuitry of the non-

linear computations in complex cells. For this, the development of suitable visual stimuli may

be guided by the idea that the spatial pattern should not necessarily maximize the responses of

a subunit but rather sharpen its responses to differentiate it from contributions of other sub-

units. For a complex cell that prefers edges of a particular orientation, for example, such a stim-

ulus might be a localized, sharp black-white edge whose intensity profile rapidly falls off as one

moves away from the black-white transition, or it might comprise an edge with sidebands of

opposing contrast on both sides, analogous to the center-surround structure of the Ricker

stripes. The desired effect would be to make the response of the complex cell strongly sensitive

to the actual positioning of the stimulus relative to the underlying subunit to probe whether

the presumed subunit model holds and to potentially identify individual subunits.

More generally, an essential design principle that underlies subunit identification with STR

is the application of a stimulus structure that can strongly trigger individual subunits but

simultaneously restricts the positions in the probed stimulus space at which responses will

occur, so that the effective subunit overlap is reduced. This design principle should be transfer-

rable also to other sensory systems, e.g., by designing auditory stimuli, potentially combined

with quasi-tomographic presentation in spectro-temporal space to increase response strength

of putative subunits, for identification of functional circuitry underlying nonlinear

computations.

Methods

Ethics statement

All experiments were performed in conformance with national and institutional guidelines

and as approved by the institutional animal care committee of the German Primate Center

and by the responsible regional government office (Niedersächsisches Landesamt für Verbrau-

cherschutz und Lebensmittelsicherheit, Permit 33.19-42502-04-20/3458).

Ganglion cell model

In order to study the super-resolved tomographic reconstruction (STR) method in a scenario

with known ground truth, we employed an LNLNP model to simulate ganglion cell responses

to a flashed presentation of a given stimulus (grayscale image). The model consisted of the fol-

lowing stages: the linear spatial filters that represent the subunits (L), the subunit nonlinearities

(N), the weighted linear summation of subunit signals (L), the output nonlinearity (N), and

the spike-generating Poisson process (P).

The subunits mark the first linear computation of the stimulus. The simulated visual area

was 40 by 40 pixels large and stimulus pixels could attain values from -1 (black) to +1 (white)
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with 0 corresponding to mean gray. Each subunit was modeled as a 2D Gaussian, whose

parameters were two standard-deviation values, an angle of rotation, and the x- and y-position

of the center situated in the simulated 40-by-40 pixel space. All subunits were normalized to a

volume of unity. For our standard model, we only used positive values for the subunit filters,

corresponding to On-type subunits (and, downstream, to simulated On-type ganglion cells).

The biologically inspired subunit layouts used throughout this manuscript were generated

using Voronoi diagrams of perturbed hexagonal lattices. To create such a layout, we first con-

structed a large hexagonal lattice (i.e., the centers of a honeycomb structure) with a nearest-

neighbor distance of 1/8th of the simulated area. The points in the lattice were then randomly

and independently perturbed by shifting them in x- and y-direction by distances each drawn

from a Gaussian distribution with a standard deviation of 21% of the nearest-neighbor dis-

tance. Next, we determined the Voronoi cells of all perturbed points using the Euclidean dis-

tance and picked those N cells (with N being the number of desired subunits) whose centers of

mass were closest to the center of the lattice. We then fitted 2D Gaussians to these Voronoi

cells that we would use as the subunits. The overlap of the subunits was increased by multiply-

ing their standard deviations with 1.35 and the size of the layout was rendered roughly inde-

pendent of the number of subunits by scaling with 1=
ffiffiffiffi
N
p

in both spatial directions. In most

cases throughout this manuscript, we typically used N = 10 subunits. Note that our procedure

of fitting (elliptical) Gaussians to Voronoi cells leads to subunits with varying sizes, eccentrici-

ties, and orientations.

To calculate the response of the model to a given stimulus, the linear response of each sub-

unit was first computed as a weighted sum of the stimulus pixels, with weights given by the

subunit’s Gaussian profile. The linear subunit responses were then passed through the subunit

nonlinearities, which we modelled as half-wave rectifications. Next, the subunit outputs were

summed in a weighted manner, with all weights being equal and normalized to unity sum.

The resulting signal was then transformed into a spike rate by the output nonlinearity,

which here amounted to a simple scaling of the signal as rectification was not required due to

the already rectified inputs. As reference points, we assumed that background gray (i.e., a sig-

nal of zero) would elicit no spikes and that a full-field white flash (i.e., the maximum stimula-

tion) would yield an average response of 30 spikes. Spike rate responses to all other stimuli

were determined by linear interpolation between these two reference points. The resulting

spike rate was used as the model output in analyses that were based on noiseless responses. By

contrast, when stochastic spike counts were analyzed, the resulting spike rate was converted

into an actual spike count using a Poisson process. Here, a single random number was drawn

from a Poisson distribution with an expected value given by the spike rate. Thus, the response

of the model to a given stimulus was either a spike rate (deterministic) or a random integer

spike count (stochastic), depending on the specified model analysis.

The receptive field of a model was empirically determined from responses to individually pre-

sented white pixels, with the strength of the receptive field given by the rate response to the white

pixel at the corresponding location. For rectifying-linear subunit nonlinearities, this noise-free

high-resolution measurement corresponds to a (weighted) sum of the Gaussian subunits.

Variations of the standard ganglion cell model

For the schematic introduction of STR in Fig 1, the realistic subunit layouts computed from

Voronoi diagrams were replaced by a simplistic layout of four subunits at x- as well as at y-

positions of 3/8 and 5/8 of the extent of the simulated area. These Gaussian subunits had stan-

dard deviations of 1/10 of the extent of the simulated area in both directions and thus no

orientation.
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To simulate responses to spatiotemporal binary white noise required for the comparison

with spike-triggered clustering in Fig 4J, we added a temporal filter to the model. Instead of

responses to separate stimuli, this enables computing responses to a sequence of stimuli

(frames). The temporal filter is applied together with the spatial Gaussian subunit filters to the

stimuli to generate a sequence of subunit activations. These are then passed through the sub-

unit nonlinearities etc. to calculate a sequence of model responses. We have assumed a frame

rate of 60 Hz and normalized the temporal filter such that a presentation of any stimulus for 9

frames (150 ms) would elicit the same summed response as in our default model without a

temporal filter.

In Fig 5, we separately tested five variations of different parts of the standard model. To

have more strongly overlapping subunits (first row), we multiplied the standard deviations of

the 2D Gaussians fitted to the selected Voronoi cells during subunit creation with 1.6 instead

of 1.35. For cosine-shaped subunits (second row), the value of a subunit at a specific distance

from its center was taken from a cosine curve up to its first zero-crossing, with zero elsewhere.

In this case, the size of the cosine subunit was chosen such that a Gaussian fitted to it had the

required standard deviations and rotation angle. As a different subunit nonlinearity (third

row), we applied a threshold-quadratic transformation instead of rectification, which involved

an additional squaring of positive values at the output of the subunits. To investigate the influ-

ence of differential subunit weights (fourth row), we evaluated a 2D Gaussian centered in the

simulated area with a standard deviation of 0.12 times the extent of the area at the center posi-

tions of the subunits to obtain their weights. Again, weights were normalized to a sum of

unity. Finally, to include spontaneous activity (fifth row), we added a universal baseline level

of 3 spikes per stimulus to the model’s spike rate.

We also investigated the effect of a second superimposed layout (Fig 6A–6C). Both layouts

were generated entirely independently, potentially with differing numbers of subunits. To

avoid correlated positioning of subunits, each layout was shifted such that a Gaussian fitted to

its individual receptive field (the linear combination of its subunits) would be centered in the

simulation area, and rotated by a random angle. Both layouts contributed equally to the mod-

el’s responses, which was achieved by normalizing the sum of each layout’s subunit weights to

the same value, here 0.5. In the case of Fig 6C, the polarity of the second layout was flipped

such that the subunits were negative filters.

To simulate the effect of spatially nonlinear integration within subunits (Fig 6D), we set up

an LNLNLNP model where the first stage corresponded to photoreceptors. To do so, we first

generated a layout of Gaussian subunits and, analogously, a layout of Gaussian photoreceptors.

For the photoreceptor layout, we set the diameter to half of that of the subunits, thus targeting

a number of photoreceptors approximately four times the number of subunits. After creating

an extensive layout of photoreceptor Gaussians of the desired size, covering the entire simu-

lated area, we discarded all photoreceptors with centers outside the 1.5 σ ellipses of all subunits.

We then connected each remaining photoreceptor to any subunit whose 1.5 σ ellipse covered

the photoreceptor’s center point and applied a weight to this connection according to the

value of the subunit’s Gaussian at the location of the photoreceptor. Weights incident to a sub-

unit were normalized to a sum of unity. The response to a stimulus was then calculated by first

computing the photoreceptor activations as a sum of the stimulus weighted with a photorecep-

tor’s Gaussian profile. Next, the activations were passed through a piecewise linear transforma-

tion, where negative values were divided by two and positive values left unchanged. These

photoreceptor signals were then combined into subunit activations by a weighted sum accord-

ing to the previously described connection weight between photoreceptors and subunits. The

rest of the model remained unchanged.
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Stimulus and analysis in simulations

To demonstrate the effect of a suppressive ring around an excitatory spot when probing the

receptive field with the spot (Fig 1C and 1D), we used a stimulus in the shape of a 2D Marr

wavelet:

L rð Þ ¼ 1 �
2r2

d2

� �

� e�
2r2
d2

Here, L(r) is the stimulus intensity (Weber contrast) of a pixel at a distance r (in pixels)

from the center of the wavelet, and d ¼ 2
ffiffiffi
5
p

defines the size of the wavelet. The wavelet will

take on the maximum allowed intensity of +1 in the center and is normalized to an average

intensity of zero. When demonstrating the responses of the model to a spot without a ring, we

used the same formula but truncated negative values. These stimuli were centered at every

pixel of the simulated area to record responses.

The tomographic stimulus is a stripe with the profile being described by a modified 1D

Ricker wavelet, hence the name Ricker stripe:

L xð Þ ¼ s0 xð Þ � 1 �
4x2

w2

� �

� e�
2x2

w2

with

s0 xð Þ ¼
s; jxj �

1

2
w

1; jxj <
1

2
w

8
>><

>>:

L(x) is the luminance of a pixel at a distance x perpendicular to the center of the Ricker

stripe and w is the width of the stripe given by the distance of the zero-crossings (i.e., the width

of the central white band). The surround factor s introduced in our modified definition of the

Ricker wavelet only multiplies the negative sidebands of the stripe and affects its integral,

which equals zero only if s = 1. Again, this wavelet will take on the maximum allowed lumi-

nance of +1 in the center. We here applied w = 5 pixels and s = 2.5 if not otherwise specified. If

the surround factor s would lead to some stimulus pixels attaining values L<−1, they were

clipped at −1. When demonstrating the principle of the method (Fig 1), the surround factor s
was set to unity or, in the case without suppressive sidebands, to zero.

Measurements with Ricker stripes were performed at 36 (if not otherwise specified) equally

distributed angles from 0˚ (inclusive) to 180˚ (exclusive). For each angle, a default of 60 equally

spaced stripe positions were probed with a shift of 2/3 of a pixel between two positions. Conse-

quently, 2160 combinations of stripe angle and position were tested, with each combination

being measured only once, and the resulting responses were composed into a sinogram. For

measurements using a spiking process, a Gaussian smoothing of the sinogram was imple-

mented. If not specified otherwise, the applied 2D Gaussian had a standard deviation of σpos =

2.5% of the size of the simulated area (corresponding to a standard deviation of one pixel) in

the spatial dimension and σang = 5˚ in the angle dimension. The resulting sinograms were then

reconstructed using FBP with a ramp filter. Note that the resolution of the reconstruction,

determined by the distance between stripe positions, is slightly higher than the resolution of

the simulated area.
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Calculation of F-scores

To quantify the quality of a reconstruction obtained by FBP, we first identified all local max-

ima in the reconstruction. We defined a local maximum as a pixel with a value at least as large

as any of its eight neighbors. Next, we discarded any local maximum smaller than 30% of the

global maximum of the reconstruction. We also discarded any local maximum that lay outside

a circle centered on the reconstruction area with a diameter of 90% the reconstruction area’s

extent. We considered all remaining local maxima to be the detected hotspots.

We then identified matches between model subunits and detected hotspots. A hotspot was

considered to correspond to a subunit if it lay within the 0.75 σ ellipse of that subunit. The 0.75

σ ellipses never overlapped, and if two hotspots lay within one 0.75 σ ellipse of the same sub-

unit, only one hotspot was judged to correspond to the subunit while the other was not consid-

ered a match. Consequently, this procedure gave us a number of true positives (hotspots

corresponding to subunits), false positives (hotspots not corresponding to a subunit), and false

negatives (subunits not detected by any hotspot). As a measure of reconstruction quality, we

then calculated the F-score defined as the harmonic mean of precision (true positives over

number of hotspots) and sensitivity (true positives over number of subunits):

F ¼
2

1

precisionþ
1

sensitivity

¼
2 � true positives

2 � true positivesþ false positivesþ false negatives

Since the F-score of the reconstruction varies from subunit layout to subunit layout, any

numbers given in the text or figures were calculated as averages over 1000 different layout

instantiations, resulting in a standard error of the mean below 0.01 in all cases. All F-scores

given in text and figures concern models employing a spiking process. Simulations were per-

formed using Python and ran on a desktop computer.

Experimental procedures

For the experimental test of our method, we used the retina of a 12-year-old adult male mar-

moset monkey (Callithrix jacchus). The retinal tissue was collected directly after the animal

was killed for use by other researchers. Following the enucleation procedure, the eyes under-

went dissection, during which the cornea, lens, and vitreous humor were extracted to obtain

access to the retinal tissue. The retina was then placed in a light-tight chamber that contained

Ames’ medium (Sigma-Aldrich, Munich, Germany), supplemented with 4 mM D-glucose and

oxygenated with a mixture of 95% O2 and 5% CO2. To maintain a pH of 7.4, the medium was

buffered with 20 mM NaHCO3. Following a dark-adaptation period of several hours, during

which retinal pieces for other experiments were prepared, a piece of peripheral retina was

excised, isolated from the pigment epithelium and placed on a multielectrode array (Multi-

Channel Systems, Reutlingen, Germany) with 252 electrodes spaced 60 μm apart and sized

10 μm, which had been coated with poly-D-lysine. The entire preparation process was carried

out under infrared illumination using a stereomicroscope equipped with night-vision goggles.

While recording from the retina piece, it was continuously supplied with the oxygenated

Ames’ medium at a flow rate of 8–9 ml/min. To maintain a stable temperature around 33˚C,

an inline heater (PH01, MultiChannel Systems, Reutlingen, Germany) and a heating element

beneath the array were employed. The recorded multielectrode array signals were amplified

and band-pass filtered to a frequency range of 300 Hz to 5 kHz, and saved to disk using the

software MC-Rack 4.6.2 (MultiChannel Systems) at a sampling rate of 25 kHz. To identify and

sort spikes from the recordings, a modified version of Kilosort [92] was used. The original ver-

sion can be accessed at https://github.com/MouseLand/Kilosort, while the modified version
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can be found at https://github.com/dimokaramanlis/KiloSortMEA. The output generated by

Kilosort was manually reviewed and curated using the software Phy2 (https://github.com/

cortex-lab/phy), discarding all units without a distinct cluster of voltage traces or without a

clear refractory period.

Custom-made software coded in C++ and OpenGL was utilized to generate visual stimuli.

The stimuli were monochromatic white and displayed on a gamma-corrected RGB-OLED

monitor (eMagin) with an 800-by-600 pixel resolution and a refresh rate of 85 Hz. When pro-

jected onto the retina through a telecentric lens (Edmund Optics), the pixel size on the retina

was 7.5 μm by 7.5 μm. The stimuli described in this manuscript and the gray background illu-

mination between stimuli had a mean irradiance of 5.45 mW/m2. We calculated the isomeriza-

tion rates of the photoreceptors following the formula in [93] with literature values for peak

sensitivities and collecting areas for marmoset and macaque monkeys [94–97]. This led to 450

isomerizations per photoreceptor per second for S-cones, 2900 for M-cones, and 8600 for

rods, indicating a low photopic light regime. The projection of the stimulus screen was focused

on the photoreceptors before the start of the experiment, which was confirmed by monitoring

through a microscope.

Basic characterizations of recorded cells

To demonstrate the spatially nonlinear integration of certain ganglion cells, we displayed a

reversing-grating stimulus. Square-wave gratings (100% Michelson contrast) with bar widths

of 7.5 μm, 15 μm, 30 μm, 60 μm, 120 μm, 240 μm, 480 μm, and 6000 μm (full-field) and corre-

spondingly 1, 1, 2, 2, 4, 4, 8, and 1 different spatial phases were presented for 12.5 s each (pre-

ceded by 1 s of full-field gray at mean intensity), reversing in contrast every about 0.5 s. The

entire sequence was repeated once for a total stimulus duration of about 10 minutes. We calcu-

lated PSTHs with a duration of two reversals and a bin size of 10 ms for visualization.

We estimated the receptive fields of cells by computing the spike-triggered average (STA)

from responses to a spatiotemporal binary white noise stimulus on a checkerboard grid [1,19].

Each stimulus field had a size of 15 μm by 15 μm and was randomly updated every four frames

(i.e., 47 ms) to either black or white with 100% Michelson contrast. The stimulus alternated

between distinct sequences of 3825 white noise images (3 min) and a fixed white noise

sequence of 652 images (~31 s) for a total time of about one hour. In this study, we only used

the non-fixed white noise. The STA was obtained with a temporal window of 42 frames (~0.5

s) at single-frame resolution. From the spatiotemporal STA, smoothed with a spatial Gaussian

filter of 60 μm standard deviation, we then detected the element that had the largest absolute

value. We defined the temporal component of the STA as the unsmoothed time course of that

pixel and the spatial component as the unsmoothed STA frame of that element. We normal-

ized the temporal component to a Euclidean norm of unity, fitted a 2D Gaussian to the spatial

component, and calculated the effective receptive field diameter as the diameter of a circle

with the same area as the 1.5 σ ellipse of the Gaussian.

To estimate a ganglion cell’s output nonlinearity, we constructed an LN model, using the

spatial and temporal STA components as filters. To enhance signal quality and reduce noise,

we truncated the length of the temporal filter to 0.25 seconds. Additionally, only pixels falling

within the smallest rectangular window that still contained the 3 σ ellipse of the fitted Gaussian

were considered in this computation. Both temporal and spatial filter were normalized to unit

Euclidean norm. Applying the temporal and spatial filters to the stimulus yielded a generator

signal for each frame of the white noise stimulus. We grouped the generator signals into ten

bins with the same number of data points. The average generator signal of each bin in
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conjunction with the average of the corresponding spike count gave an estimation of the cell’s

contrast-response relationship.

We also computed a 50 ms long autocorrelation function for a cell’s spike train from the

non-fixed parts of the white noise stimulus with a resolution of 0.04 ms, smoothed with a

Gaussian of 0.4 ms standard deviation, and normalized to a sum of unity.

We manually identified 31 Off and 18 On parasol cells in the dataset, based on their fast

biphasic filters, effective receptive field diameters in the expected range of roughly 100 μm to

150 μm [48], and tiling of visual space by their receptive fields.

Stimulus and analysis for subunit identification in experiments

For the application in experiments, the tomographic stimulus was slightly modified in some

aspects compared to the analyses of model simulations. While the Ricker stripe profile

remained unchanged, we flipped it in polarity so that the center of the stripe was at maximum

black (-100% Weber contrast). A surround factor of s = 1.5 was applied to the white sidebands,

and the width of the Ricker stripes, i.e., the distance of the zero-crossings, was chosen as

w = 45 μm. Furthermore, in contrast to the simulations, we displayed multiple parallel stripes

simultaneously across the entire stimulation area with a center-to-center distance of 375 μm.

Stripes were flashed for 153 ms (13 frames) separated by 447 ms (38 frames) of full-field gray

at background intensity. The stripe angles ranged from 0˚ to 175˚ in steps of 5˚. For each

angle, 75 equally spaced shifts of position, ranging from 0 μm to 370 μm with a step size of

5 μm, were applied to the stripes (perpendicular to their orientation), so that the maximum

shift was one step less than the stripe distance. Each combination of stripe angle and stripe

position was flashed once in randomized order, before the stimulus was repeated in a new ran-

dom order. In total, the tomographic stimulus was presented for almost 1.5 hours with each

combination presented at least three times.

For each presented combination of stripe angle and position, we determined the average

number of spikes elicited between stimulus onset and offset to compose a sinogram. We cor-

rected the sinograms for the positioning of the receptive field by shifting the values in each

sinogram row, i.e., for each angle, such that the value at the center corresponded to the stripe

position with the smallest distance to the center of the receptive field. Here, we used the posi-

tion of the 2D Gaussian fitted to the spatial STA from the white noise analysis as an estimate of

the receptive field position. Next, we applied a Gaussian smoothing with a standard deviation

of σpos = 7.5 μm and σang = 5˚. The processed sinograms were then used for reconstruction of

subunit layouts by applying the same FBP method used for the simulations.

We also analyzed the responses to the offsets of stripes, where we included all spikes during

the 153 ms (i.e., the same duration as for the onset) after the offset. Sinogram and FBP analyses

were performed analogously. Furthermore, we analyzed the first and second half of the record-

ing separately, by splitting the measurement into the first roughly 45 minutes and second 45

minutes and analyzing both independently.
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Writing – original draft: Steffen Krüppel.
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