Preprints

  • Applying super-resolution and tomography concepts to identify receptive field subunits in the retina
    Krüppel S, Khani MH, Schreyer HM, Sridhar S, Ramakrishna V, Zapp SJ, Mietsch M, Karamanlis D, Gollisch T
    bioRxiv 2023.11.27.568854 (2023)
    link: https://www.biorxiv.org/content/10.1101/2023.11.27.568854v1

  • Natural stimuli drive concerted nonlinear responses in populations of retinal ganglion cells
    Karamanlis D, Khani MH, Schreyer HM, Zapp SJ, Mietsch M, Gollisch T
    bioRxiv 2023.01.10.523412 (2023)
    link: https://www.biorxiv.org/content/10.1101/2023.01.10.523412v1

  • Filter-based models of suppression in retinal ganglion cells: comparison and generalization across species and stimuli
    Shahidi N, Rozenblit F, Khani MH, Schreyer HM, Mietsch M, Protti DA, Gollisch T
    bioRxiv 2022.12.01.518577 (2022)
    link: https://www.biorxiv.org/content/10.1101/2022.12.01.518577v1

  • Novel transient cell clusters provide a possible link between early neural activity and angiogenesis in the neonatal mouse retina
    de Montigny J, Thorne C, Bhattacharya D, Sertedakis DB, Krishnamoorthy V, Rozenblit F, Gollisch T, Sernagor E
    bioRxiv 2022.08.04.52860 (2022)
    link: https://www.biorxiv.org/content/10.1101/2022.08.04.502860v1

2024

  • Neuronal temporal filters as normal mode extractors
    Golkar S, Berman J, Lipshutz D, Haret RM, Gollisch T, Chklovskii DB
    Phys Rev Res 6:013111 (2024)
    PDF

2023

  • Diversity of ganglion cell responses to saccade-like image shifts in the primate retina
    Krüppel S, Khani MH, Karamanlis D, Erol YC, Zapp SJ, Mietsch M, Protti DA, Rozenblit F, Gollisch T
    J Neurosci 43:5319-5339 (2023)
    PubMedPDFData

2022

  • Retinal encoding of natural scenes
    Karamanlis D, Schreyer HM, Gollisch T
    Annu Rev Vis Sci 8:171-193 (2022)
    PubMedPDF (author preprint), free full text and PDF on journal website

  • Molecular mechanisms mediating the transfer of disease-associated proteins and effects on neuronal activity
    Brás IC, Khani MH, Vasili E, Möbius W, Riedel D, Parfentev I, Gerhardt E, Fahlbusch C, Urlaub H, Zweckstetter M, Gollisch T, Outeiro TF
    J Parkinsons Dis 12:2397-2422 (2022)
    PubMed, PDF

  • Ectosomes and exosomes modulate neuronal spontaneous activity
    Brás IC, Khani MH, Riedel D, Parfentev I, Gerhardt E, van Riesen C, Urlaub H, Gollisch T, Outeiro TF
    J Proteom 269:104721 (2022)
    PubMed, PDF (preprint version from bioRxiv)

  • Retinal receptive-field substructure: scaffolding for coding and computation
    Zapp SJ*, Nitsche S*, Gollisch T (* = equal contribution)
    Trends Neurosci 45:430-445 (2022)
    PubMed, PDF

  • Simple model for encoding natural images by retinal ganglion cells with nonlinear spatial integration
    Liu JK, Karamanlis D, Gollisch T
    PLOS Comput Biol 18:e1009925 (2022)
    PubMed, PDFData

2021

  • Nonlinear spatial integration in retinal bipolar cells shapes the encoding of artificial and natural stimuli
    Schreyer HM, Gollisch T
    Neuron 109:1692-1706 (2021)
    PubMed, PDF, Supplemental Information, Data

  • Nonlinear spatial integration underlies the diversity of retinal ganglion cell responses to natural images
    Karamanlis D, Gollisch T
    J Neurosci 41:3479-3498 (2021)
    PubMed, PDF, Data

  • Linear and nonlinear chromatic integration in the mouse retina
    Khani MH, Gollisch T
    Nat Commun 12:1900 (2021)
    PubMed, PDF, Supplementary Information, Code, Data

2020

  • What the salamander eye has been telling the vision scientist’s brain
    Rozenblit F, Gollisch T
    Semin Cell Dev Biol 106:61-71 (2020)
    PubMed, PDF

2019

  • Activity correlations between direction-selective retinal ganglion cells synergistically enhance motion decoding from complex visual scenes
    Kühn NK, Gollisch T
    Neuron 101:963-976 (2019)
    PubMed, PDF, Code, Data

2018

  • CKAMP44 modulates integration of visual inputs in the lateral geniculate nucleus
    Chen X, Aslam M, Gollisch T, Allen K, von Engelhardt J
    Nat Commun 9:261 (2018)
    PubMed, PDF, Supplementary Information

  • Bioinspired approach to modeling retinal ganglion cells using system identification techniques
    Vance PJ, Das GP, Kerr D, Coleman SA, McGinnity TM, Gollisch T, Liu JK
    IEEE Trans Neural Netw Learn Syst 29:1796-1808 (2018)
    PubMed,  PDF

2017

  • Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells
    Khani MH, Gollisch T
    J Neurophysiol 118:3024-3043 (2017)
    PubMed, PDF, Data

  • Differential effects of HCN channel block on On and Off pathways in the retina as a potential cause for medication-induced phosphene perception
    Bemme S, Weick M, Gollisch T
    Invest Ophthalmol Vis Sci 58:4754-4767 (2017)
    PubMed, PDF, Data

  • Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization
    Liu JK, Schreyer HM, Onken A, Rozenblit F, Khani MH, Krishnamoorthy V, Panzeri S, Gollisch T
    Nat Commun 8:149 (2017)
    PubMed, PDF, Supplementary Information, Code, Data

  • Loss of Neuroligin3 specifically downregulates retinal GABAAα2 receptors without abolishing direction selectivity
    Hoon M, Krishnamoorthy V, Gollisch T, Falkenburger B, Varoqueaux F
    PLoS One 12:e0181011 (2017)
    PubMed, PDF

  • Sensitivity to image recurrence across eye-movement-like image transitions through local serial inhibition in the retina
    Krishnamoorthy V, Weick M, Gollisch T
    Elife 6:e22431 (2017)
    PubMed, PDF, Code

  • Neural circuit inference from function to structure
    Real E, Asari H, Gollisch T, Meister M
    Curr Biol 27:189-198 (2017)
    PubMed, PDF, Supplementary Information

2016

  • Joint encoding of object motion and motion direction in the salamander retina
    Kühn NK, Gollisch T
    J Neurosci 36:12203-12216 (2016)
    PubMed, PDF

  • Using matrix and tensor factorizations for the single-trial analysis of population spike trains
    Onken A, Liu JK, Karunasekara PPCR, Delis I, Gollisch T, Panzeri S
    PLoS Comput Biol 12:e1005189 (2016)
    PubMed, PDFData

  • Non-linear retinal processing supports invariance during fixational eye movements
    Greene G, Gollisch T, Wachtler T
    Vision Res 118:158-170 (2016)
    PubMed, PDF

2015

  • Spike-triggered covariance analysis reveals phenomenological diversity of contrast adaptation in the retina
    Liu JK, Gollisch T
    PLoS Comput Biol 11:e1004425 (2015)
    PubMed, PDF, Data

2014

  • Nonlinear spatial integration in the receptive field surround of retinal ganglion cells
    Takeshita D, Gollisch T
    J Neurosci 34:7548-7561 (2014)
    PubMed, PDF

2013

  • Local and global contrast adaptation in retinal ganglion cells
    Garvert MM, Gollisch T
    Neuron 77:915-928 (2013)
    PubMed, PDF, Supplemental Information

  • Features and functions of nonlinear spatial integration by retinal ganglion cells
    Gollisch T
    J Physiol Paris 107:338-348 (2013)
    PubMed, PDF

  • Spike-triggered covariance: geometric proof, symmetry properties, and extension beyond Gaussian stimuli
    Samengo I, Gollisch T
    J Comput Neurosci 34:137-161 (2013)
    PubMed, PDF

  • Computing complex visual features with retinal spike times
    Gütig R*, Gollisch T*, Sompolinsky H, Meister M (* = equal contribution)
    PLoS One 8:e53063 (2013)
    PubMed, PDF

2012

  • The iso-response method: measuring neuronal stimulus integration with closed-loop experiments
    Gollisch T, Herz AVM
    Front Neural Circuits 6:104 (2012)
    PubMed, PDF

  • Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing
    tom Dieck S*, Specht D*, Strenzke N, Hida Y, Krishnamoorthy V, Schmidt KF, Inoue E, Ishizaki H, Tanaka-Okamoto M, Miyoshi J, Hagiwara A, Brandstätter JH, Löwel S, Gollisch T, Ohtsuka T, Moser T (* = equal contribution)
    J Neurosci 32:12192-12203 (2012)
    PubMed, PDF

  • Closed-loop measurements of iso-response stimuli reveal dynamic nonlinear stimulus integration in the retina
    Bölinger D, Gollisch T
    Neuron 73:333-346 (2012)
    PubMed, PDF, Supplemental Information

  • Gene therapy restores missing cone-mediated vision in the CNGA3(-/-) mouse model of achromatopsia
    Michalakis S, Mühlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD, Becirovic E, Bai L, Huber G, Beck SC, Fahl E, Büning H, Schmidt J, Zong X, Gollisch T, Biel M, Seeliger MW
    Adv Exp Med Biol 723:183-189 (2012)
    PubMed, PDF

2010

  • Neue Ansätze zur Therapie genetisch bedingter Blindheit
    Michalakis S, Mühlfriedel R, Koch S, Gollisch T, Biel M, Seeliger MW
    BIOspektrum
    7:749-750 (2010)
    PDF

  • Restoration of cone vision in the CNGA3(-/-) mouse model of congenital complete lack of cone photoreceptor function
    Michalakis S, Mühlfriedel R, Tanimoto N, Krishnamoorthy V, Koch S, Fischer MD, Becirovic E, Bai L, Huber G, Beck SC, Fahl E, Büning H, Paquet-Durand F, Zong X, Gollisch T, Biel M, Seeliger MW
    Mol Ther 18:2057-2063 (2010)
    PubMed, PDF

  • Eye smarter than scientists believed: neural computations in circuits of the retina
    Gollisch T, Meister M
    Neuron 65:150-164 (2010)
    PubMed, PDF

2009

  • Throwing a glance at the neural code: rapid information transmission in the visual system
    Gollisch T
    HFSP J 3:36-46 (2009)
    PubMed, PDF

2008

  • Modeling convergent ON and OFF pathways in the early visual system
    Gollisch T, Meister M
    Biol Cybern 99:263-278 (2008)
    PubMed, PDF

  • Rapid neural coding in the retina with relative spike latencies
    Gollisch T, Meister M
    Science 319:1108-1111 (2008)
    PubMed, PDF, Supporting Online Material

  • Time-warp invariant pattern detection with bursting neurons
    Gollisch T
    New J Phys 10:015012 (2008)
    PDF

2007

  • From response to stimulus: adaptive sampling in sensory physiology
    Benda J, Gollisch T, Machens CK, Herz AVM
    Curr Opin Neurobiol 17:430-436 (2007)
    PubMed, PDF

2006

  • Modeling single-neuron dynamics and computations: a balance of detail and abstraction
    Herz AVM, Gollisch T, Machens CK, Jaeger D
    Science 314:80-85 (2006)
    PubMed, PDF

  • Estimating receptive fields in the presence of spike-time jitter
    Gollisch T
    Network 17:103-129 (2006)
    PubMed, PDF

  • Spike-timing precision underlies the coding efficiency of auditory receptor neurons
    Rokem A, Watzl S, Gollisch T, Stemmler M, Herz AVM, Samengo I
    J Neurophysiol 95:2541 -2552 (2006)
    PubMed, PDF

2005

  • Disentangling sub-millisecond processes within an auditory transduction chain
    Gollisch T, Herz AVM
    PLoS Biol 3:e8 (2005)
    PubMed, PDF, Supporting Information, Synopsis supplied by journal

  • Testing the efficiency of sensory coding with optimal stimulus ensembles
    Machens CK, Gollisch T, Kolesnikova O, Herz AVM
    Neuron 47:447-456 (2005)
    PubMed, PDF, Supplementary Methods

  • Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli
    Schaette R, Gollisch T, Herz AVM
    J Neurophysiol 93:3270-3281 (2005)
    PubMed, PDF

2004

  • Input-driven components of spike-frequency adaptation can be unmasked in vivo
    Gollisch T, Herz AVM
    J Neurosci 24:7435-7444 (2004)
    PubMed, PDF

2003

  • Analyzing mechanosensory transduction by identifying invariant directions in stimulus space
    Gollisch T, Herz AVM
    Neurocomput 52-54:525-530 (2003)
    PDF

2002

  • Energy integration describes sound-intensity coding in an insect auditory system
    Gollisch T, Schütze H, Benda J, Herz AVM
    J Neurosci 22:10434-10448 (2002)
    PubMed,PDF

  • Equation of state for helium-4 from microphysics
    Gollisch T, Wetterich C
    Phys Rev B 65:134506 (2002)
    PDF

2001

  • Unique translation between Hamiltonian operators and functional integrals
    Gollisch T, Wetterich C
    Phys Rev Lett 86:1-5 (2001)
    PubMed, PDF